32 research outputs found
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
IL-37 Causes Excessive Inflammation and Tissue Damage in Murine Pneumococcal Pneumonia
Streptococcus pneumoniae infections can lead to severe complications with excessive immune activation and tissue damage. Interleukin-37 (IL-37) has gained importance as a suppressor of innate and acquired immunity, and its effects have been therapeutic as they prevent tissue damage in autoimmune and inflammatory diseases. By using RAW macrophages, stably transfected with human IL-37, we showed a 70% decrease in the cytokine levels of IL-6, TNF-alpha, and IL-1beta, and a 2.2-fold reduction of the intracellular killing capacity of internalized pneumococci in response to pneumococcal infection. In a murine model of infection with S. pneumoniae, using mice transgenic for human IL-37b (IL-37tg), we observed an initial decrease in cytokine expression of IL-6, TNF-alpha, and IL-1beta in the lungs, followed by a late-phase enhancement of pneumococcal burden and subsequent increase of proinflammatory cytokine levels. Additionally, a marked increase in recruitment of alveolar macrophages and neutrophils was noted, while TRAIL mRNA was reduced 3-fold in lungs of IL-37tg mice, resulting in necrotizing pneumonia with augmented death of infiltrating neutrophils, enhanced bacteremic spread, and increased mortality. In conclusion, we have identified that IL-37 modulates several core components of a successful inflammatory response to pneumococcal pneumonia, which lead to increased inflammation, tissue damage, and mortality
Inflammation in children with chronic kidney disease linked to gut dysbiosis and metabolite imbalance
BACKGROUND: Chronic kidney disease (CKD) is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood, but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis (HD) or kidney transplantation) with a mean age of 10.6 ± 3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from HD patients activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classical to non classical and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in HD patients. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the pro-inflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities