168 research outputs found

    The ``Out-Longitudinal'' Cross Term and Other Model Independent Features of the Two-Particle HBT Correlation Function

    Full text link
    Using two specific models and a model independent formalism, we show that an ``out-longitudinal'' cross term should be included in any gaussian fits to correlation data. In addition, we show that correlation radii (including the cross term) measure lengths of homogeneity within the source, not necessarily geometric sizes.Comment: 4 pages, uuencoded compressed postscrip

    Lifetimes and Sizes from Two-Particle Correlation Functions

    Get PDF
    We discuss the Yano-Koonin-Podgoretskii (YKP) parametrization of the two-particle correlation function for azimuthally symmetric expanding sources. We derive model-independent expressions for the YKP fit parameters and discuss their physical interpretation. We use them to evaluate the YKP fit parameters and their momentum dependence for a simple model for the emission function and propose new strategies for extracting the source lifetime. Longitudinal expansion of the source can be seen directly in the rapidity dependence of the Yano-Koonin velocity.Comment: 15 pages REVTEX, 2 figures included, submitted to Phys. Lett. B, Expanded discussion of disadvantages of standard HBT fit and of Fig.

    Universal Pion Freeze-out Phase-Space Density

    Get PDF
    Results on the pion freeze-out phase-space density in sulphur-nucleus, Pb-Pb and pion-proton collisions at CERN-SPS are presented. All heavy-ion reactions are consistent with the thermal Bose-Einstein distrtibution f=1/(exp(E/T)-1) at T~120 MeV, modified for expansion. Pion-proton data are also consistent with f, but at T~180 MeV.Comment: 1 page, 1 figure; 98' report for GSI-Darmstad

    Observing Non-Gaussian Sources in Heavy-Ion Reactions

    Get PDF
    We examine the possibility of extracting non-Gaussian sources from two-particle correlations in heavy-ion reactions. Non-Gaussian sources have been predicted in a variety of model calculations and may have been seen in various like-meson pair correlations. As a tool for this investigation, we have developed an improved imaging method that relies on a Basis spline expansion of the source functions with an improved implementation of constraints. We examine under what conditions this improved method can distinguish between Gaussian and non-Gaussian sources. Finally, we investigate pion, kaon, and proton sources from the p-Pb reaction at 450 GeV/nucleon and from the S-Pb reaction at 200 GeV/nucleon studied by the NA44 experiment. Both the pion and kaon sources from the S-Pb correlations seem to exhibit a Gaussian core with an extended, non-Gaussian halo. We also find evidence for a scaling of the source widths with particle mass in the sources from the p-Pb reaction.Comment: 16 pages, 15 figures, 5 tables, uses RevTex3.

    Source Dimensions in Ultrarelativistic Heavy Ion Collisions

    Get PDF
    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. We find that the longitudinal and outward radii are surprisingly sensitive to the algorithm used for two-body collisions. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target requires the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8-1.0 GeV/fm3^3. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major change is an additional discussion of the classical two-body collision algorithm, a (compressed) postscript file of the complete paper including figures can be obtained from Authors or via anonymous ftp at ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.

    Bose-Einstein Correlations for Three-Dimensionally Expanding, Cylindrically Symmetric, Finite Systems

    Get PDF
    The parameters of the Bose-Einstein correlation function may obey an {\it MtM_t-scaling}, as observed in S+PbS + Pb and Pb+PbPb + Pb reactions at CERN SPS. This MtM_t-scaling implies that the Bose-Einstein correlation functions view only a small part of the big and expanding system. The full sizes of the expanding system at the last interaction are shown to be measurable with the help the invariant momentum distribution of the emitted particles. A vanishing duration parameter can also be generated in the considered model-class with a specific MtM_t dependence.Comment: 35 pages, ReVTeX, LaTeX, no figures, discussion extende

    (Anti)Proton and Pion Source Sizes and Phase Space Densities in Heavy Ion Collisions

    Get PDF
    NA44 has measured mid-rapidity deuteron spectra from AA collisions at sqrt{s}=18GeV/A at the CERN SPS. Combining these spectra with published proton, antiproton and antideuteron data allows us to calculate, within a coalescence framework, proton and antiproton source sizes and phase space densities. These results are compared to pion source sizes and densities, pA results and to lower energy (AGS) data. The antiproton source is larger than the proton source at sqrt{s}=18GeV/A. The phase space densities of pions and protons are not constant but grow with system size. Both pi+ and proton radii decrease with transverse mass and increase with sqrt{s}. Pions and protons do not freeze-out independently. The nature of their interaction changes as sqrt{s}, and the pion/proton ratio increases.Comment: 4 pages, Latex 2.09, 3 eps figures. Changes for January 2001. The proton source size is now calculated assuming a more realistic Hulthen, rather than Gaussian, wavefunction. A new figure shows the effect of this change which is important for small radii. A second new figure shows the results of RQMD calculations of the proton source size and phase density. Because of correlations between position and momentum coalesence does not show the full proton source size. The paper has been streamlined and readability improve

    Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions

    Full text link
    Two-proton correlation functions have been measured in Si+Pb collisions at 14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration. Data are compared with predictions of the transport model RQMD and the source size is inferred from this comparison. Our analysis shows that, for both reactions, the characteristic size of the system at freeze-out exceeds the size of the projectile, suggesting that the fireball created in the collision has expanded. For Au+Au reactions, the observed centrality dependence of the two-proton correlation function implies that more central collisions lead to a larger source sizes.Comment: RevTex, 12 pages, 5 figure

    The full-length prototype of the KLOE drift chamber

    Get PDF
    The main goal of the KLOE experiment is the study of CP violation in the K mesons system, with an accuracy of 10(-4) in the measurement of Re(epsilon'/epsilon). This task imposes strong constraints on the design and operation of the drift chamber, which must reconstruct the charged decays of low momentum K-L's and K-S's with high efficiency and high resolution, full-length prototype of the chamber has been built and tested on a 50 GeV/c beam. The analysis of the large sample of data has allowed a detailed study of the time to distance relations as a function of the track parameters and of the peculiar geometry of the drift cell, The detector performance, in terms of efficiency, spatial resolutions and dE/dx resolution, is illustrated and discussed
    • …
    corecore