4 research outputs found

    Current transport versus continental inputs in the eastern Indian Ocean: Radiogenic isotope signatures of clay size sediments

    Get PDF
    Analyses of radiogenic neodymium (Nd), strontium (Sr), and lead (Pb) isotope compositions of clay-sized detrital sediments allow detailed tracing of source areas of sediment supply and present and past transport of particles by water masses in the eastern Indian Ocean. Isotope signatures in surface sediments range from −21.5 (ɛNd), 0.8299 (87Sr/86Sr), and 19.89 (206Pb/204Pb) off northwest Australia to +0.7 (ɛNd), 0.7069 (87Sr/86Sr), and 17.44 (206Pb/204Pb) southwest of Java. The radiogenic isotope signatures primarily reflect petrographic characteristics of the surrounding continental bedrocks but are also influenced by weathering-induced grain size effects of Pb and Sr isotope systems with superimposed features that are caused by current transport of clay-sized particles, as evidenced off Australia where a peculiar isotopic signature characterizes sediments underlying the southward flowing Leeuwin Current and the northward flowing West Australian Current (WAC). Gravity core FR10/95-GC17 off west Australia recorded a major isotopic change from Last Glacial Maximum values of −10 (ɛNd), 0.745 (87Sr/86Sr), and 18.8 (206Pb/204Pb) to Holocene values of −22 (ɛNd), 0.8 (87Sr/86Sr), and 19.3 (206Pb/204Pb), which documents major climatically driven changes of the WAC and in local riverine particle supply from Australia during the past 20 kyr. In contrast, gravity core FR10/95-GC5 located below the present-day pathway of the Indonesian throughflow (ITF) shows a much smaller isotopic variability, indicating a relatively stable ITF hydrography over most of the past 92 kyr. Only the surface sediments differ significantly in their isotopic composition, indicating substantial changes in erosional sources attributed to a change of the current regime during the past 5 kyr

    Detection of mini-UAVs in the presence of strong topographic relief - A multisensor perspective

    No full text
    Based on the steadily growing use of mini-UAVs for numerous civilian and military applications, mini-UAVs have been recognized as an increasing potential threat. Therefore, counter-UAV solutions addressing the peculiarities of this class of UAVs have recently received a significant amount of attention. Reliable detection, localization, identification and tracking represents a fundamental prerequisite for such counter-UAV systems. In this paper, we focus on the assessment of different sensor technologies and their ability to detect mini-UAVs in a representative rural Swiss environment. We conducted a field trial in August 2015, using different, primarily short range, experimental sensor systems from armasuisse and selected research partners. After an introduction into the challenges for UAV detection in regions with strong topographic relief, we will introduce the experimental setup and describe the key results from this joint experiment

    Joint use of image-based and GNSS techniques for urban navigation

    No full text
    The use of position-based devices is constantly increasing with a wide spectrum of applications, e.g. the continuous demand of mapping services based on user’s location. Depending on the specific application, a different level of accuracy could be requested, going from room level to few centimeters of error. The navigation problem is typically faced by using Global Navigation Satellite Systems (GNSS), but this technique cannot efficiently work in case of poor sky visibility, as happens in urban areas. An option could be the combination of image-based and GNSS solutions. Two different assisted photogrammetry techniques are here presented and discussed. First, an image-based navigation solution constrained by using ground control points (GCPs) extracted from urban maps is presented. It was tested considering a set of different scenarios, reaching accuracies of the order of 0.20 m. A second outdoor navigation solution has been realized by integrating the data acquired by a Microsoft Kinect device (RGB and depth images) and a GNSS receiver through a proper Kalman filter. Also in this case the achieved accuracy is of the order of 0.20 m
    corecore