170 research outputs found
Production of a sterile species via active-sterile mixing: an exactly solvable model
The production of a sterile species via active-sterile mixing in a thermal
medium is studied in an exactly solvable model. The \emph{exact} time evolution
of the sterile distribution function is determined by the dispersion relations
and damping rates for the quasiparticle modes. These depend on
\wtg = \Gamma_{aa}/2\Delta E, with the interaction rate of the
active species in absence of mixing and the oscillation frequency in
the medium without damping. \wtg \ll1,\wtg \gg 1 describe the weak and strong
damping limits respectively. For \wtg\ll1, \Gamma_1 = \Gamma_{aa}\cos^2\tm ;
\Gamma_{2}=\Gamma_{aa}\sin^2\tm where \tm is the mixing angle in the medium
and the sterile distribution function \emph{does not} obey a simple rate
equation. For \wtg \gg 1, and \Gamma_2 = \Gamma_{aa}
\sin^22\tm/4\wtg^2, is the sterile production rate. In this regime sterile
production is suppressed and the oscillation frequency \emph{vanishes} at an
MSW resonance, with a breakdown of adiabaticity. These are consequences of
quantum Zeno suppression. For active neutrinos with standard model interactions
the strong damping limit is \emph{only} available near an MSW resonance
\emph{if} with the vacuum mixing angle.
The full set of quantum kinetic equations for sterile production for arbitrary
\wtg are obtained from the quantum master equation. Cosmological resonant
sterile neutrino production is quantum Zeno suppressed relieving potential
uncertainties associated with the QCD phase transition.Comment: To appear in Phys. Rev.
Classification of singular points in polarization field of CMB and eigenvectors of Stokes matrix
Analysis of the singularities of the polarization field of CMB, where
polarization is equal to zero, is presented. It is found that the
classification of the singular points differs from the usual three types known
in the ordinary differential equations. The new statistical properties of
polarization field are discussed, and new methods to detect the presence of
primordial tensor perturbations are indicated.Comment: 7 pages, 1 figure
DEFROST: A New Code for Simulating Preheating after Inflation
At the end of inflation, dynamical instability can rapidly deposit the energy
of homogeneous cold inflaton into excitations of other fields. This process,
known as preheating, is rather violent, inhomogeneous and non-linear, and has
to be studied numerically. This paper presents a new code for simulating scalar
field dynamics in expanding universe written for that purpose. Compared to
available alternatives, it significantly improves both the speed and the
accuracy of calculations, and is fully instrumented for 3D visualization. We
reproduce previously published results on preheating in simple chaotic
inflation models, and further investigate non-linear dynamics of the inflaton
decay. Surprisingly, we find that the fields do not want to thermalize quite
the way one would think. Instead of directly reaching equilibrium, the
evolution appears to be stuck in a rather simple but quite inhomogeneous state.
In particular, one-point distribution function of total energy density appears
to be universal among various two-field preheating models, and is exceedingly
well described by a lognormal distribution. It is tempting to attribute this
state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure
Cosmology with variable parameters and effective equation of state for Dark Energy
A cosmological constant, Lambda, is the most natural candidate to explain the
origin of the dark energy (DE) component in the Universe. However, due to
experimental evidence that the equation of state (EOS) of the DE could be
evolving with time/redshift (including the possibility that it might behave
phantom-like near our time) has led theorists to emphasize that there might be
a dynamical field (or some suitable combination of them) that could explain the
behavior of the DE. While this is of course one possibility, here we show that
there is no imperative need to invoke such dynamical fields and that a variable
cosmological constant (including perhaps a variable Newton's constant too) may
account in a natural way for all these features.Comment: LaTeX, 9 pages, 1 figure. Talk given at the 7th Intern. Workshop on
Quantum Field Theory Under the Influence of External Conditions (QFEXT 05
Probing neutrino masses with future galaxy redshift surveys
We perform a new study of future sensitivities of galaxy redshift surveys to
the free-streaming effect caused by neutrino masses, adding the information on
cosmological parameters from measurements of primary anisotropies of the cosmic
microwave background (CMB). Our reference cosmological scenario has nine
parameters and three different neutrino masses, with a hierarchy imposed by
oscillation experiments. Within the present decade, the combination of the
Sloan Digital Sky Survey (SDSS) and CMB data from the PLANCK experiment will
have a 2-sigma detection threshold on the total neutrino mass close to 0.2 eV.
This estimate is robust against the inclusion of extra free parameters in the
reference cosmological model. On a longer term, the next generation of
experiments may reach values of order sum m_nu = 0.1 eV at 2-sigma, or better
if a galaxy redshift survey significantly larger than SDSS is completed. We
also discuss how the small changes on the free-streaming scales in the normal
and inverted hierarchy schemes are translated into the expected errors from
future cosmological data.Comment: 14 pages, 7 figures. Added results with the KAOS proposal and 1
referenc
On the Origin of Gauge Symmetries and Fundamental Constants
A statistical mechanism is proposed for symmetrization of an extra space. The
conditions and rate of attainment of a symmetric configuration and, as a
consequence, the appearance of gauge invariance in low-energy physics is
discussed. It is shown that, under some conditions, this situation occurs only
after completion of the inflationary stage. The dependence of the constants
and G on the geometry of the extra space and the initial parameters of
the Lagrangian of the gravitational field with higher derivatives are analyzed.Comment: 9 pages, minor correction
Current cosmological bounds on neutrino masses and relativistic relics
We combine the most recent observations of large-scale structure (2dF and
SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put
constraints on flat cosmological models where the number of massive neutrinos
and of massless relativistic relics are both left arbitrary. We discuss the
impact of each dataset and of various priors on our bounds. For the standard
case of three thermalized neutrinos, we find an upper bound on the total
neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS
data (resp. including priors from supernovae data and the HST Key Project), a
bound that is quite insensitive to the splitting of the total mass between the
three species. When the total number of neutrinos or relativistic relics N_eff
is left free, the upper bound on sum m_nu (at 2sigma, including all priors)
ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an
explanation of the parameter degeneracy that allows larger values of the masses
when N_eff increases. Finally, we show that the limit on the total neutrino
mass is not significantly modified in the presence of primordial gravitational
waves, because current data provide a clear distinction between the
corresponding effects.Comment: 13 pages, 6 figure
Mixing of Active and Sterile Neutrinos
We investigate mixing of neutrinos in the MSM (neutrino Minimal Standard
Model), which is the MSM extended by three right-handed neutrinos. Especially,
we study elements of the mixing matrix between three
left-handed neutrinos () and two sterile
neutrinos () which are responsible to the seesaw mechanism
generating the suppressed masses of active neutrinos as well as the generation
of the baryon asymmetry of the universe (BAU). It is shown that
can be suppressed by many orders of magnitude compared with
and , when the Chooz angle is large in the
normal hierarchy of active neutrino masses. We then discuss the neutrinoless
double beta decay in this framework by taking into account the contributions
not only from active neutrinos but also from all the three sterile neutrinos.
It is shown that and give substantial, destructive contributions
when their masses are smaller than a few 100 MeV, and as a results receive no stringent constraint from the current bounds on such decay.
Finally, we discuss the impacts of the obtained results on the direct searches
of in meson decays for the case when are lighter than pion
mass. We show that there exists the allowed region for with such
small masses in the normal hierarchy case even if the current bound on the
lifetimes of from the big bang nucleosynthesis is imposed. It is also
pointed out that the direct search by using and might miss such since the branching ratios can be
extremely small due to the cancellation in , but the search by
can cover the whole allowed region by improving the
measurement of the branching ratio by a factor of 5.Comment: 30 pages, 32 figure
Multidimensional cosmological models: cosmological and astrophysical implications and constraints
We investigate four-dimensional effective theories which are obtained by
dimensional reduction of multidimensional cosmological models with factorizable
geometry and consider the interaction between conformal excitations of the
internal space (geometrical moduli excitations) and Abelian gauge fields. It is
assumed that the internal space background can be stabilized by minima of an
effective potential. The conformal excitations over such a background have the
form of massive scalar fields (gravitational excitons) propagating in the
external spacetime. We discuss cosmological and astrophysical implications of
the interaction between gravexcitons and four-dimensional photons as well as
constraints arising on multidimensional models of the type considered in our
paper. In particular, we show that due to the experimental bounds on the
variation of the fine structure constant, gravexcitons should decay before
nucleosynthesis starts. For a successful nucleosynthesis the masses of the
decaying gravexcitons should be m>10^4 GeV. Furthermore, we discuss the
possible contribution of gravexcitons to UHECR. It is shown that, at energies
of about 10^{20}eV, the decay length of gravexcitons with masses m>10^4 GeV is
very small, but that for m <10^2 GeV it becomes much larger than the
Greisen-Zatsepin-Kuzmin cut-off distance. Finally, we investigate the
possibility for gravexciton-photon oscillations in strong magnetic fields of
astrophysical objects. The corresponding estimates indicate that even the high
magnetic field strengths of magnetars are not sufficient for an efficient and
copious production of gravexcitons.Comment: 16 pages, LaTeX2e, minor changes, improved references, to appear in
PR
Antimatter from the cosmological baryogenesis and the anisotropies and polarization of the CMB radiation
We discuss the hypotheses that cosmological baryon asymmetry and entropy were
produced in the early Universe by phase transition of the scalar fields in the
framework of spontaneous baryogenesis scenario. We show that annihilation of
the matter-antimatter clouds during the cosmological hydrogen recombination
could distort of the CMB anisotropies and polarization by delay of the
recombination. After recombination the annihilation of the antibaryonic clouds
(ABC) and baryonic matter can produce peak-like reionization at the high
redshifts before formation of quasars and early galaxy formation. We discuss
the constraints on the parameters of spontaneous baryogenesis scenario by the
recent WMAP CMB anisotropy and polarization data and on possible manifestation
of the antimatter clouds in the upcoming PLANCK data.Comment: PRD in press with minor change
- …