865 research outputs found

    Ultrastructural analysis of chromatin in meiosis I plus II of rye (Secale cereale L.)

    Get PDF
    Scanning electron microscopy (SEM) proves to be an appropriate technique for imaging chromatin organization in meiosis I and II of rye (Secale cereale) down to a resolution of a few nanometers. It could be shown for the first time that organization of basic structural elements (coiled and parallel fibers, chromomeres) changes dramatically during the progression to metaphase I and II. Controlled loosening with proteinase K (after fixation with glutaraldehyde) provides an enhanced insight into chromosome architecture even of highly condensed stages of meiosis. By selective staining with platinum blue, DNA content and distribution can be visualized within compact chromosomes as well as in a complex arrangement of fibers. Chromatin interconnecting threads, which are typically observed in prophase I between homologous and non-homologous chromosomes, stain clearly for DNA. In zygotene transversion of chromatid strands to their homologous counterparts becomes evident. In pachytene segments of synapsed and non-synapsed homologs alternate. At synapsed regions pairing is so intimate that homologous chromosomes form one filament of structural entity. Chiasmata are characterized by chromatid strands which traverse from one homolog to its counterpart. Bivalents are characteristically fused at their telomeric regions. In metaphase I and II there is no structural evidence for primary and secondary constrictions. Copyright (C) 2003 S. Karger AG, Basel

    SO(3) "Nuclear Physics" with ultracold Gases

    Full text link
    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S=3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.Comment: 34 pages, 9 figure

    Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories

    Full text link
    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.Comment: 12 pages, 5 figures. Main text plus one basic introduction to the topic and one supplementary material on implementation. Final versio

    Variational ansatz for the superfluid Mott-insulator transition in optical lattices

    Full text link
    We develop a variational wave function for the ground state of a one-dimensional bosonic lattice gas. The variational theory is initally developed for the quantum rotor model and later on extended to the Bose-Hubbard model. This theory is compared with quasi-exact numerical results obtained by Density Matrix Renormalization Group (DMRG) studies and with results from other analytical approximations. Our approach accurately gives local properties for strong and weak interactions, and it also describes the crossover from the superfluid phase to the Mott-insulator phase.Comment: Entirely new and more precise variational metho

    Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits

    Get PDF
    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.Comment: Published versio

    Artefakte

    Get PDF

    Entangling strings of neutral atoms in 1D atomic pipeline structures

    Get PDF
    We study a string of neutral atoms with nearest neighbor interaction in a 1D beam splitter configuration, where the longitudinal motion is controlled by a moving optical lattice potential. The dynamics of the atoms crossing the beam splitter maps to a 1D spin model with controllable time dependent parameters, which allows the creation of maximally entangled states of atoms by crossing a quantum phase transition. Furthermore, we show that this system realizes protected quantum memory, and we discuss the implementation of one- and two-qubit gates in this setup.Comment: 4 pages, REVTEX, revised version: improvements in introduction and figure

    Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench

    Full text link
    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.Comment: 14 pages, 5 figures. Main text plus one general supplementary material and one basic introduction to the topic. Published versio

    Experimental Investigation of Reactive-Inert Particulate Matter Detachment from Metal Fibres at Low Flow Velocities and Different Gas Temperatures

    Get PDF
    The detachment of particle structures from single fibres in gas flow has been investigated only for inert particle structures yet. This study investigates the detachment of particle structures containing reactive components. These reactive components disappear during the reaction and enhance detachment at low flow velocities. Soot was used as the reactive component and glass spheres as the inert component of the particle structure. The soot disappears due to combustion with oxygen leaving only the glass spheres on the fibre. Without reaction, the detachment phenomenon was observed at superficial flow velocities above 1.9 m/s and with reaction at 0.5 m/s. This shows that reacting and disappearing components of the particle structure can enhance detachment
    • …
    corecore