103 research outputs found

    GNSS remote sensing of the Australian tropopause

    Get PDF
    Radio occultation (RO) techniques that use signals transmitted by Global Navigation Satellite Systems (GNSS) have emerged over the past decade as an important tool for measuring global changes in tropopause temperature and height, a valuable capacity given the tropopause’s sensitivity to temperature variations. This study uses 45,091 RO data from the CHAMP (CHAllenging Minisatellite Payload, 80 months), GRACE (Gravity Recovery And Climate Experiment, 23 months) and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, 20 months) satellites to analyse the variability of the tropopause’s height and temperature over Australia. GNSS RO temperature profiles from CHAMP, GRACE, and COSMIC are first validated using radiosonde observations provided by the Bureau of Meteorology (Australia). These are compared to RO soundings from between 2001 and 2007 that occurred within 3 h and 100 km of a radiosonde.The results indicate that RO soundings provide data of a comparable quality to radiosonde observations in the tropopause region, with temperature deviations of less than 0.5 ± 1.5 K. An analysis of tropopause height and temperature anomalies indicates a height increase over Australia as a whole of ca. 4.8 ± 1.3 m between September 2001 and April 2008, with a corresponding temperature decrease of −0.019 ± 0.007 K. A similar pattern of increasing height/decreasing temperature was generally observed when determining the spatial distribution of the tropopause height and temperature rate of change over Australia. Although only a short period has been considered in this study, a function of the operating time of these satellites, the results nonetheless show an increase in the height of the tropopause over Australia during this period and thus may indicate regional warming. Several mechanisms could be responsible for these changes, such as an increase in the concentration of greenhouse gases in the atmosphere, and lower stratospheric cooling due to ozone loss, both of which have been observed during the last decades

    Electric and magnetic dipole transitions to bound states in 206Pb

    Get PDF
    Nuclear resonance fluorescence measurements with linearly polarized bremsstrahlung were performed to determine parities of bound dipole transitions in 206Pb. A new 1+ level at 5800 keV was found, which has almost the same strength as the isoscalar M1 transition in 208Pb. Twenty-four further dipole states in 206Pb below 7.6 MeV possess negative parity

    Parities of bound dipole states in 40Ar

    Get PDF
    Nuclear resonance fluorescence experiments with linearly polarized bremsstrahlung were performed to determine parities of strong dipole transitions in 40Ar. A total of 14 transitions—ten of them previously unknown—in the energy range from 4.7 to 10.2 MeV could be identified. From this experiment it is evident that the main dipole strength to bound states is due to E1 excitations. An upper limit of B(M1) [up arrow] <0.5 µN2 was found for individual magnetic dipole excitations in 40Ar in the energy region below neutron threshold

    Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    Get PDF
    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures

    Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Get PDF
    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions

    Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography

    Get PDF
    Ultrastructure and intercellular interaction of Ignicoccus hospitalis and Nanoarchaeum equitans were investigated using two different electron microscopy approaches, by three-dimensional reconstructions from serial sections, and by electron cryotomography. Serial sections were assembled into 3D reconstructions, for visualizing the unusual complexity of I. hospitalis, its huge periplasmic space, the vesiculating cytoplasmic membrane, and the outer membrane. The cytoplasm contains fibres which are reminiscent to a cytoskeleton. Cell division in I. hospitalis is complex, and different to that in Euryarchaeota or Bacteria. An irregular invagination of the cytoplasmic membrane is followed by separation of the two cytoplasms. Simultaneous constriction of cytoplasmic plus outer membrane is not observed. Cells of N. equitans show a classical mode of cell division, by constriction in the mid-plane. Their cytoplasm exhibits two types of fibres, elongated and ring-shaped. Electron micrographs of contact sites between I. hospitalis and N. equitans exhibit two modes of interaction. One is indirect and mediated by thin fibres; in other cells the two cell surfaces are in direct contact. The two membranes of I. hospitalis cells are frequently seen in direct contact, possibly a prerequisite for transporting metabolites or substrates from the cytoplasm of one cell to the other. Rarely, a transport based on cargo vesicles is observed between I. hospitalis and N. equitans

    Deconstructing the Late Phase of Vimentin Assembly by Total Internal Reflection Fluorescence Microscopy (TIRFM)

    Get PDF
    Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments
    corecore