16 research outputs found
Specific-Heat Exponent of Random-Field Systems via Ground-State Calculations
Exact ground states of three-dimensional random field Ising magnets (RFIM)
with Gaussian distribution of the disorder are calculated using
graph-theoretical algorithms. Systems for different strengths h of the random
fields and sizes up to N=96^3 are considered. By numerically differentiating
the bond-energy with respect to h a specific-heat like quantity is obtained,
which does not appear to diverge at the critical point but rather exhibits a
cusp. We also consider the effect of a small uniform magnetic field, which
allows us to calculate the T=0 susceptibility. From a finite-size scaling
analysis, we obtain the critical exponents \nu=1.32(7), \alpha=-0.63(7),
\eta=0.50(3) and find that the critical strength of the random field is
h_c=2.28(1). We discuss the significance of the result that \alpha appears to
be strongly negative.Comment: 9 pages, 9 figures, 1 table, revtex revised version, slightly
extende