26,648 research outputs found
Detailed Abundances of 15 Stars in the Metal-Poor Globular Cluster NGC 4833
We have observed 15 red giant stars in the relatively massive, metal-poor
globular cluster NGC 4833 using the Magellan Inamori Kyocera Echelle
spectrograph at Magellan. We calculate stellar parameters for each star and
perform a standard abundance analysis to derive abundances of 43 species of 39
elements, including 20 elements heavier than the iron group. We derive
= -2.25 +/- 0.02 from Fe I lines and = -2.19 +/- 0.013 from Fe II
lines. We confirm earlier results that found no internal metallicity spread in
NGC 4833, and there are no significant star-to-star abundance dispersions among
any elements in the iron group (19 <= Z <= 30). We recover the usual abundance
variations among the light elements C, N, O, Na, Mg, Al, and possibly Si. The
heavy-element distribution reflects enrichment by r-process nucleosynthesis
([Eu/Fe] = +0.36 +/- 0.03), as found in many other metal-poor globular
clusters. We investigate small star-to-star variations found among the
neutron-capture elements, and we conclude that these are probably not real
variations. Upper limits on the Th abundance, log epsilon (Th/Eu) < -0.47 +/-
0.09, indicate that NGC 4833, like other globular clusters where Th has been
studied, did not experience a so-called "actinide boost."Comment: Accepted for publication in MNRAS. Version 2 adds final publication
referenc
Summary of the Heavy Flavours Working Group
This is a summary of the contributions presented in the Heavy Flavours
Working Group of the DIS2006 Workshop.Comment: 14 pp, 8 figures. To appear in the proceedings of 14th International
Workshop on Deep Inelastic Scattering (DIS 2006), Tsukuba, Japan, 20-24 Apr
200
Efficient approximations of neutrino physics for three-dimensional simulations of stellar core collapse
Neutrino transport in spherically symmetric models of stellar core collapse
and bounce has achieved a technically complete level, rewarded by the agreement
among independent groups that a multi-dimensional treatment of the
fluid-instabilities in the post-bounce phase is indispensable to model
supernova explosions. While much effort is required to develop a reliable
neutrino transport technique in axisymmetry, we explore neutrino physics
approximations and parameterizations for an efficient three-dimensional
simulation of the fluid-instabilities in the shock-heated matter that
accumulates between the accretion shock and the protoneutron star. We
demonstrate the reliability of a simple parameterization scheme in the collapse
phase and extend our 3D magneto-hydrodynamical collapse simulations to a
preliminary postbounce evolution. The growth of magnetic fields is
investigated.Comment: 5 pages, 4 figures, in Proceedings of "Nuclei in the Cosmos IX,
Geneva, Jun 25-30", associated movies are displayed at
http://www.physik.unibas.ch/~liebend/displa
Numerical generation of two-dimensional orthogonal curvilinear coordinates in an Euclidean space
A noniterative method for the numerical generation of orthogonal curvilinear coordinates for plane annular regions between two arbitrary smooth closed curves was developed. The basic generating equation is the Gaussian equation for an Euclidean space which is solved analytically. The method is applied in many cases and these test results demonstrate that the proposed method can be readily applied to a wide variety of problems. The method can also be used for simply connected regions only by obtaining the solution of the linear equation under the changed boundary conditions
Approaching the dynamics of hot nucleons in supernovae
All recent numerical simulations agree that stars in the main sequence mass
range of 9-40 solar masses do not produce a prompt hydrodynamic ejection of the
outer layers after core collapse and bounce. Rather they suggest that stellar
core collapse and supernova explosion are dynamically distinct astrophysical
events, separated by an unspectacular accretion phase of at least ~40 ms
duration. As long as the neutrinospheres remain convectively stable, the
explosion dynamics is determined by the neutrons, protons, electrons and
neutrinos in the layer of impact-heated matter piling up on the protoneutron
star. The crucial role of neutrino transport in this regime has been emphasized
in many previous investigations. Here, we search for efficient means to address
the role of magnetic fields and fluid instabilities in stellar core collapse
and the postbounce phase.Comment: 4 pages, contribution to Nuclei in the Cosmos VIII, Jul. 19-23,
submitted to Nucl. Phys.
Numerical solution of the Navier-Stokes equations for blunt nosed bodies in supersonic flows
A time dependent, two dimensional Navier-Stokes code employing the method of body fitted coordinate technique was developed for supersonic flows past blunt bodies of arbitrary shapes. The bow shock ahead of the body is obtained as part of the solution, viz., by shock capturing. A first attempt at mesh refinement in the shock region was made by using the forcing function in the coordinate generating equations as a linear function of the density gradients. The technique displaces a few lines from the neighboring region into the shock region. Numerical calculations for Mach numbers 2 and 4.6 and Reynolds numbers from 320 to 10,000 were performed for a circular cylinder with and without a fairing. Results of Mach number 4.6 and Reynolds number 10,000 for an isothermal wall temperature of 556 K are presented in detail
Numerical solutions for laminar and turbulent viscous flow over single and multi-element airfoils using body-fitted coordinate systems
The technique of body-fitted coordinate systems is applied in numerical solutions of the complete time-dependent compressible and incompressible Navier-Stokes equations for laminar flow and to the time-dependent mean turbulent equations closed by modified Kolmogorov hypotheses for turbulent flow. Coordinate lines are automatically concentrated near to the bodies at higher Reynolds number so that accurate resolution of the large gradients near the solid boundaries is achieved. Two-dimensional bodies of arbitrary shapes are treated, the body contour(s) being simply input to the program. The complication of the body shape is thus removed from the problem
Flow of evaporating, gravity-driven thin liquid films over topography
The effect of topography on the free surface and solvent concentration profiles of an evaporating thin film of liquid flowing down an inclined plane is considered. The liquid is assumed to be composed of a resin dissolved in a volatile solvent with the associated solvent concentration equation derived on the basis of the well-mixed approximation. The dynamics of the film is formulated as a lubrication approximation and the effect of a composition-dependent viscosity is included in the model. The resulting time-dependent, nonlinear, coupled set of governing equations is solved using a full approximation storage multigrid method.
The approach is first validated against a closed-form analytical solution for the case of a gravity-driven, evaporating thin film flowing down a flat substrate. Analysis of the results for a range of topography shapes reveal that although a full-width, spanwise topography such as a step-up or a step-down does not affect the composition of the film, the same is no longer true for the case of localized topography, such as a peak or a trough, for which clear nonuniformities of the solvent concentration profile can be observed in the wake of the topography
Neutron-Capture Nucleosynthesis in the First Stars
Recent studies suggest that metal-poor stars enhanced in carbon but
containing low levels of neutron-capture elements may have been among the first
to incorporate the nucleosynthesis products of the first generation of stars.
We have observed 16 stars with enhanced carbon or nitrogen using the MIKE
Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the
Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present
radial velocities, stellar parameters, and detailed abundance patterns for
these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and
other heavy elements are detected. In four stars, these heavy elements appear
to have originated in some form of r-process nucleosynthesis. In one star, a
partial s-process origin is possible. The origin of the heavy elements in the
rest of the sample cannot be determined unambiguously. The presence of elements
heavier than the iron group offers further evidence that zero-metallicity
rapidly-rotating massive stars and pair instability supernovae did not
contribute substantial amounts of neutron-capture elements to the regions where
the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor
stars with low levels of neutron-capture elements were enriched by products of
zero-metallicity supernovae only, then the presence of these heavy elements
indicates that at least one form of neutron-capture reaction operated in some
of the first stars.Comment: Accepted for publication in the Astrophysical Journal (36 pages, 26
figures
Chemical equilibrium and stable stratification of a multi-component fluid: thermodynamics and application to neutron stars
A general thermodynamic argument shows that multi-component matter in full
chemical equilibrium, with uniform entropy per baryon, is generally stably
stratified. This is particularly relevant for neutron stars, in which the
effects of entropy are negligible compared to those of the equilibrium
composition gradient established by weak interactions. It can therefore be
asserted that, regardless of the uncertainties in the equation of state of
dense matter, neutron stars are stably stratified. This has important,
previously discussed consequences for their oscillation modes, magnetic field
evolution, and internal angular momentum transport.Comment: AASTeX, 8 pages, including 1 PS figure. Accepted for publication in
The Astrophysical Journa
- …