249 research outputs found

    Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis

    Get PDF
    Two novel genes encoding for heat and solvent stable lipases from strictly anaerobic extreme thermophilic bacteria Thermoanaerobacter thermohydrosulfuricus (LipTth) and Caldanaerobacter subterraneus subsp. tengcongensis (LipCst) were successfully cloned and expressed in E. coli. Recombinant proteins were purified to homogeneity by heat precipitation, hydrophobic interaction, and gel filtration chromatography. Unlike the enzymes from mesophile counterparts, enzymatic activity was measured at a broad temperature and pH range, between 40 and 90°C and between pH 6.5 and 10; the half-life of the enzymes at 75°C and pH 8.0 was 48 h. Inhibition was observed with 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride and phenylmethylsulfonylfluorid indicating that serine and thiol groups play a role in the active site of the enzymes. Gene sequence comparisons indicated very low identity to already described lipases from mesophilic and psychrophilic microorganisms. By optimal cultivation of E. coli Tuner (DE3) cells in 2-l bioreactors, a massive production of the recombinant lipases was achieved (53–2200 U/l) Unlike known lipases, the purified robust proteins are resistant against a large number of organic solvents (up to 99%) and detergents, and show activity toward a broad range of substrates, including triacylglycerols, monoacylglycerols, esters of secondary alcohols, and p-nitrophenyl esters. Furthermore, the enzyme from T. thermohydrosulfuricus is suitable for the production of optically pure compounds since it is highly S-stereoselective toward esters of secondary alcohols. The observed E values for but-3-yn-2-ol butyrate and but-3-yn-2-ol acetate of 21 and 16, respectively, make these enzymes ideal candidates for kinetic resolution of synthetically useful compounds

    A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan

    Get PDF
    Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Delta-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoARha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharide

    Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation

    Get PDF
    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 angstrom resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins

    Environmental factors modulating the stability and enzymatic activity of the Petrotoga mobilis Esterase (PmEst)

    Get PDF
    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/ÎČ protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required

    Photobiocatalytic chemistry of oxidoreductases using water as the electron donor

    Full text link
    [EN] To date, water has been poorly studied as the sacrificial electron donor for biocatalytic redox reactions using isolated enzymes. Here we demonstrate that water can also be turned into a sacrificial electron donor to promote biocatalytic redox reactions. The thermodynamic driving force required for water oxidation is obtained from UV and visible light by means of simple titanium dioxide-based photocatalysts. The electrons liberated in this process are delivered to an oxidoreductase by simple flavin redox mediators. Overall, the feasibility of photobiocatalytic, water-driven bioredox reactions is demonstrated.Financial support from the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD 2009-00050, Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267). M. M. acknowledges the Spanish Science and Innovation Ministry for a 'Juan de la Cierva' postdoctoral contract. S. G. acknowledges the European Union Marie Curie Programme (ITN 'Biotrains', Grant Agreement No. 238531).Mifsud Grau, M.; Gargiulo, S.; Iborra Chornet, S.; Arends, IWCE.; Hollmann, F.; Corma CanĂłs, A. (2014). Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications. 5:1-6. https://doi.org/10.1038/ncomms4145S165Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).Pollard, D. J. & Woodley, J. M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25, 66–73 (2007).Ran, N., Zhao, L., Chen, Z. & Tao, J. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green. Chem. 10, 361–372 (2008).Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).Schmid, A., Hollmann, F., Park, J. B. & BĂŒhler, B. The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13, 359–366 (2002).Schoemaker, H. E., Mink, D. & Wubbolts, M. G. Dispelling the myths-biocatalysis in industrial synthesis. Science 299, 1694–1697 (2003).Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).Drauz K., Gröger H., May O. (eds)Enzyme Catalysis in Organic Synthesis Wiley-VCH: Weinheim, (2012).Weckbecker, A., Gröger, H. & Hummel, W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. inBiosystems Engineering I: Creating Superior Biocatalysts pp195–242Springer: Berlin, (2010).Van der Donk, W. A. & Zhao, H. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14, 421–426 (2003).Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green. Chem. 15, 1773–1789 (2013).Rodriguez, C., Lavandera, I. & Gotor, V. Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr. Org. Chem. 16, 2525–2541 (2012).Reipa, V., Mayhew, M. P. & Vilker, V. L. A direct electrode-driven P450 cycle for biocatalysis. Proc. Natl Acad. Sci. USA 94, 13554–13558 (1997).Bernard, J., van Heerden, E., Arends, I. W. C. E., Opperman, D. J. & Hollmann, F. Chemoenzymatic reduction of conjugated C=C double bonds. Chem. Cat. Chem. 4, 196–199 (2012).Hollmann, F., Arends, I. W. C. E. & BĂŒhler, K. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chem. Cat. Chem. 2, 762–782 (2010).Hollmann, F., Hofstetter, K., Habicher, T., Hauer, B. & Schmid, A. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation. J. Am. Chem. Soc. 127, 6540–6541 (2005).Hollmann, F., Lin, P.-C., Witholt, B. & Schmid, A. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a fad-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125, 8209–8217 (2003).Hollmann, F. & Schmid, A. Towards [Cp*Rh(bpy)(H2O)]2+-promoted P450 catalysis: direct regeneration of CytC. J. Inorg. Biochem. 103, 313–315 (2009).Hollmann, F., Taglieber, A., Schulz, F. & Reetz, M. T. A light-driven stereoselective biocatalytic oxidation. Angew. Chem. Int. Ed. 46, 2903–2906 (2007).Mifsud Grau, M. et al. Photoenzymatic reduction of C=C double bonds. Adv. Synth. Catal. 351, 3279–3286 (2009).Ruinatscha, R., Dusny, C., Buehler, K. & Schmid, A. Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology. Adv. Synth. Catal. 351, 2505–2515 (2009).Schwaneberg, U., Appel, D., Schmitt, J. & Schmid, R. D. P450 in biotechnology: zinc driven ω-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. J. Biotechnol. 84, 249–257 (2000).Taglieber, A., Schulz, F., Hollmann, F., Rusek, M. & Reetz, M. T. Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. Chem. Bio. Chem. 9, 565–572 (2008).Udit, A. K., Arnold, F. H. & Gray, H. B. Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3. J. Inorg. Biochem. 98, 1547–1550 (2004).Udit, A. K., Hill, M. G., Bittner, V. G., Arnold, F. H. & Gray, H. B. Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome p450 bm3 electrodes. J. Am. Chem. Soc. 126, 10218–10219 (2004).Unversucht, S., Hollmann, F., Schmid, A. & van PĂ©e, K.-H. FADH2-Dependence of Tryptophan 7-Halogenase. Adv. Synth. Catal. 347, 1163–1167 (2005).Zilly, F. E., Taglieber, A., Schulz, F., Hollmann, F. & Reetz, M. T. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem. Commun. 7152–7154 (2009).Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012).Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).Dau, H., Zaharieva, I. & Haumann, M. Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16, 3–10 (2012).Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013).Takanabe, K. & Domen, K. Preparation of inorganic photocatalytic materials for overall water splitting. Chem. Cat. Chem. 4, 1485–1497 (2012).Wee, T.-L. et al. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133, 16742–16745 (2011).Cargnello, M. & Fornasiero, P. Photocatalysis by nanostructured TiO2 based semiconductors. inHandbook of Green Chemistry, Green Nanoscience (eds Selva M., Perosa A. Wiley-VCH: Weinheim, (2010).Liu, S. Q. & Chen, A. C. Coadsorption of horseradish peroxidase with thionine on TiO2: Nanotubes for biosensing. Langmuir 21, 8409–8413 (2005).Zhang, Y., He, P. L. & Hu, N. F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49, 1981–1988 (2004).Chen, D., Zhang, H., Li, X. & Li, J. H. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal. Chem. 82, 2253–2261 (2010).Gomes Silva, C. U., JuĂĄrez, R., Marino, T., Molinari, R. & GarcĂ­a, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010).Opperman, D. J., Piater, L. A. & van Heerden, E. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J. Bacteriol. 190, 3076–3082 (2008).Opperman, D. J. et al. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem. Biophys. Res. Commun. 393, 426–431 (2010).Choi, S. H. et al. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature. J. Mol. Catal. A: Chem. 304, 166–173 (2009)

    Characterization of esterase activity from an Acetomicrobium hydrogeniformans enzyme with high structural stability in extreme conditions

    Get PDF
    The biotechnological and industrial uses of thermostable and organic solvent-tolerant enzymes are extensive and the investigation of such enzymes from microbiota present in oil reservoirs is a promising approach. Searching sequence databases for esterases from such microbiota, we have identified in silico a potentially secreted esterase from Acetomicrobium hydrogeniformans, named AhEst. The recombinant enzyme was produced in E. coli to be used in biochemical and biophysical characterization studies. AhEst presented hydrolytic activity on short-acyl-chain p-nitrophenyl ester substrates. AhEst activity was high and stable in temperatures up to 75 °C. Interestingly, high salt concentration induced a significant increase of catalytic activity. AhEst still retained ~ 50% of its activity in 30% concentration of several organic solvents. Synchrotron radiation circular dichroism and fluorescence spectroscopies confirmed that AhEst displays high structural stability in extreme conditions of temperature, salinity, and organic solvents. The enzyme is a good emulsifier agent and is able to partially reverse the wettability of an oil-wet carbonate substrate, making it of potential interest for use in enhanced oil recovery. All the traits observed in AhEst make it an interesting candidate for many industrial applications, such as those in which a significant hydrolytic activity at high temperatures is required
    • 

    corecore