329 research outputs found

    New Physics and the Landau Pole

    Get PDF
    In scalar field theories the Landau pole is an ultraviolet singularity in the running coupling constant that indicates a mass scale at which the theory breaks down and new physics must intervene. However, new physics at the pole will in general affect the running of the low energy coupling constant, which will in turn affect the location of the pole and the related upper limit (``triviality'' bound) on the low energy coupling constant. If the new physics is strongly coupled to the scalar fields these effects can be significant even though they are power suppressed. We explore the possible range of such effects by deriving the one loop renormalization group equations for an effective scalar field theory with a dimension 6 operator representing the low energy effects of the new physics. As an independent check we also consider a renormalizable model of the high-scale physics constructed so that its low energy limit coincides with the effective theory.Comment: 26 pages, 5 figure

    Effects of technicolor on standard model running couplings

    Full text link
    We discuss the running couplings in the standard model, SU(3)C×)_C \times SU(2)L×)_L \times U(1)Y)_Y, when the Higgs sector is replaced by SU(NTC)N_{TC}) technicolor. Particular attention is given to the running of the couplings at momentum scales where technicolor is nonperturbative, and in this region we apply a relativistic constituent technifermion model. This model has been tested against the known running of the QED coupling due to nonperturbative QCD. An understanding of this low momentum running allows the calculation of the couplings at a higher scale, Λpert\Lambda_{pert}, where technicolor becomes perturbative. We provide numerical values for the changes in the three standard model couplings between mZm_Z and Λpert\Lambda_{pert} due to technicolor, assuming separately ``one doublet'' and ``one family'' technicolor models. The distinction between a running and walking technicolor coupling is also considered.Comment: 14 pages of LaTeX, UTPT-94-

    Exact steady-state velocity of ratchets driven by random sequential adsorption

    Full text link
    We solve the problem of discrete translocation of a polymer through a pore, driven by the irreversible, random sequential adsorption of particles on one side of the pore. Although the kinetics of the wall motion and the deposition are coupled, we find the exact steady-state distribution for the gap between the wall and the nearest deposited particle. This result enables us to construct the mean translocation velocity demonstrating that translocation is faster when the adsorbing particles are smaller. Monte-Carlo simulations also show that smaller particles gives less dispersion in the ratcheted motion. We also define and compare the relative efficiencies of ratcheting by deposition of particles with different sizes and we describe an associated "zone-refinement" process.Comment: 11 pages, 4 figures New asymptotic result for low chaperone density added. Exact translocation velocity is proportional to (chaperone density)^(1/3

    One loop corrections to quantum hadrodynamics with vector mesons

    Get PDF
    The renormalized elastic ππ\pi\pi scattering amplitude to one loop is calculated in the chiral limit in the σ\sigma model and in a Quantum Hadrodynamic model (QHD-III) with vector mesons. It is argued that QHD-III reduces to the linear σ\sigma model in the limit that the vector meson masses become large. The pion decay constant is also calculated to 1-loop in the σ\sigma model, and at tree level in QHD-III; it is shown that the coefficient of the tree level term in the scattering amplitude equals Fπ2F_\pi^{-2}. The 1-loop correction of FπF_\pi in QHD-III violates strong isospin current conservation. Thus,it is concluded that QHD-III can, at best, only describe the strongly interacting nuclear sector.Comment: 6 page

    Information metric from a linear sigma model

    Full text link
    The idea that a spacetime metric emerges as a Fisher-Rao `information metric' of instanton moduli space has been examined in several field theories such as the Yang-Mills theories and nonlinear sigma models. In this brief paper, we report that the flat Euclidean or Minkowskian metric, rather than an anti-de Sitter metric that generically emerges from instanton moduli spaces, can be obtained as the Fisher-Rao metric from a non-trivial solution of the massive Klein-Gordon field (a linear sigma model). This realization of the flat space from the simple field theory would be useful to investigate the ideas that relate the spacetime geometry with the information geometry.Comment: 8 pages, 1 figure, to appear in PR

    Relative entropy, Haar measures and relativistic canonical velocity distributions

    Get PDF
    The thermodynamic maximum principle for the Boltzmann-Gibbs-Shannon (BGS) entropy is reconsidered by combining elements from group and measure theory. Our analysis starts by noting that the BGS entropy is a special case of relative entropy. The latter characterizes probability distributions with respect to a pre-specified reference measure. To identify the canonical BGS entropy with a relative entropy is appealing for two reasons: (i) the maximum entropy principle assumes a coordinate invariant form; (ii) thermodynamic equilibrium distributions, which are obtained as solutions of the maximum entropy problem, may be characterized in terms of the transformation properties of the underlying reference measure (e.g., invariance under group transformations). As examples, we analyze two frequently considered candidates for the one-particle equilibrium velocity distribution of an ideal gas of relativistic particles. It becomes evident that the standard J\"uttner distribution is related to the (additive) translation group on momentum space. Alternatively, imposing Lorentz invariance of the reference measure leads to a so-called modified J\"uttner function, which differs from the standard J\"uttner distribution by a prefactor, proportional to the inverse particle energy.Comment: 15 pages: extended version, references adde

    Hydrogen atom in phase space: The Wigner representation

    Full text link
    We have found an effective method of calculating the Wigner function, being a quantum analogue of joint probability distribution of position and momentum, for bound states of nonrelativistic hydrogen atom. The formal similarity between the eigenfunctions of nonrelativistic hydrogen atom in the momentum representation and Klein-Gordon propagators has allowed the calculation of the Wigner function for an arbitrary bound state of the hydrogen atom. These Wigner functions for some low lying states are depicted and discussed.Comment: 8 pages (including figures

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    Hitting sbottom in natural SUSY

    Get PDF
    We compare the experimental prospects of direct stop and sbottom pair production searches at the LHC. Such searches for stops are of great interest as they directly probe for states that are motivated by the SUSY solution to the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY spectrum. Noting that sbottom searches are less experimentally challenging and scale up in reach directly with the improvement on b-tagging algorithms, we discuss the interplay of small TeV scale custodial symmetry violation with sbottom direct pair production searches as a path to obtaining strong sub-TeV constraints on stops in a natural SUSY scenario. We argue that if a weak scale natural SUSY spectrum does not exist within the reach of LHC, then hopes for such a spectrum for large regions of parameter space should sbottom out. Conversely, the same arguments make clear that a discovery of such a spectrum is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio

    On the Long-Range Exciton Transport in Molecular Systems: The Application to H-Aggregated Heterotriangulene Chains

    Get PDF
    © 2017 American Chemical Society. Self-assembled aggregates of pigment molecules are potential building blocks for excitonic circuits that find their application in energy conversion and optical signal processing. Recent experimental studies of one-dimensional heterotriangulene supramolecular aggregates suggested that singlet excitons in these structures can propagate on several micron distances. We explore this possibility theoretically by combining electronic structure calculations with microscopic models for exciton transport. A detailed characterization of the structural disorder and exciton decoherence is provided. We argue that advanced, well-established exciton transport models, used in our study, give about one order of magnitude shorter estimates for the exciton propagation length which suggest that there are other possible explanations of the experimental results
    corecore