621 research outputs found
Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain
We study front propagation and diffusion in the reaction-diffusion system A
A + A on a lattice. On each lattice site at most one A
particle is allowed at any time. In this paper, we analyze the problem in the
full range of parameter space, keeping the discrete nature of the lattice and
the particles intact. Our analysis of the stochastic dynamics of the foremost
occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation
results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.
Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts
We present a (heuristic) theoretical derivation for the scaling of the
diffusion coefficient for fluctuating ``pulled'' fronts. In agreement
with earlier numerical simulations, we find that as ,
approaches zero as , where is the average number of particles per
correlation volume in the stable phase of the front. This behaviour of
stems from the shape fluctuations at the very tip of the front, and is
independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.
Fronts with a Growth Cutoff but Speed Higher than
Fronts, propagating into an unstable state , whose asymptotic speed
is equal to the linear spreading speed of infinitesimal
perturbations about that state (so-called pulled fronts) are very sensitive to
changes in the growth rate for . It was recently found
that with a small cutoff, for ,
converges to very slowly from below, as . Here we show
that with such a cutoff {\em and} a small enhancement of the growth rate for
small behind it, one can have , {\em even} in the
limit . The effect is confirmed in a stochastic lattice model
simulation where the growth rules for a few particles per site are accordingly
modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.
Fluctuating "Pulled" Fronts: the Origin and the Effects of a Finite Particle Cutoff
Recently it has been shown that when an equation that allows so-called pulled
fronts in the mean-field limit is modelled with a stochastic model with a
finite number of particles per correlation volume, the convergence to the
speed for is extremely slow -- going only as .
In this paper, we study the front propagation in a simple stochastic lattice
model. A detailed analysis of the microscopic picture of the front dynamics
shows that for the description of the far tip of the front, one has to abandon
the idea of a uniformly translating front solution. The lattice and finite
particle effects lead to a ``stop-and-go'' type dynamics at the far tip of the
front, while the average front behind it ``crosses over'' to a uniformly
translating solution. In this formulation, the effect of stochasticity on the
asymptotic front speed is coded in the probability distribution of the times
required for the advancement of the ``foremost bin''. We derive expressions of
these probability distributions by matching the solution of the far tip with
the uniformly translating solution behind. This matching includes various
correlation effects in a mean-field type approximation. Our results for the
probability distributions compare well to the results of stochastic numerical
simulations. This approach also allows us to deal with much smaller values of
than it is required to have the asymptotics to be valid.Comment: 26 pages, 11 figures, to appear in Phys. rev.
Near-infrared photoabsorption by C(60) dianions in a storage ring
We present a detailed study of the electronic structure and the stability of C(60) dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least similar to 1.5 eV. For C(60)(2-) ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C(60)(2-) ions is singlet. The observed spectrum corresponds to an electronic transition from a t(1u) lowest unoccupied molecular orbital (LUMO) of C(60) to the t(1g) LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10723 cm(-1) corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm(-1) and (probably) 420 cm(-1) excitation are observed. We argue that a very broad absorption band from about 11 500 cm(-1) to 13 500 cm(-1) consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C(60)(-) may also be a transition to a cone state
Amplitude and Frequency Spectrum of Thermal Fluctuations of A Translocating RNA Molecule
Using a combination of theory and computer simulations, we study the
translocation of an RNA molecule, pulled through a solid-state nanopore by an
optical tweezer, as a method to determine its secondary structure. The
resolution with which the elements of the secondary structure can be determined
is limited by thermal fluctuations. We present a detailed study of these
thermal fluctuations, including the frequency spectrum, and show that these
rule out single-nucleotide resolution under the experimental conditions which
we simulated. Two possible ways to improve this resolution are strong
stretching of the RNA with a back-pulling voltage across the membrane, and
stiffening of the translocated part of the RNA by biochemical means.Comment: Significantly expanded compared to previous version, 13 pages, 4
figures, to appear in J. Phys.: Condens. Matte
The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff
The concept of pulled fronts with a cutoff has been introduced to
model the effects of discrete nature of the constituent particles on the
asymptotic front speed in models with continuum variables (Pulled fronts are
the fronts which propagate into an unstable state, and have an asymptotic front
speed equal to the linear spreading speed of small linear perturbations
around the unstable state). In this paper, we demonstrate that the introduction
of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear
diffusion equation with a cutoff, we show that the longest relaxation times
that govern the convergence to the asymptotic front speed and profile,
are given by , for
.Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.
Emergence of pulled fronts in fermionic microscopic particle models
We study the emergence and dynamics of pulled fronts described by the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic
reaction-diffusion process A + A A$ on the lattice when only a particle is
allowed per site. To this end we identify the parameter that controls the
strength of internal fluctuations in this model, namely, the number of
particles per correlated volume. When internal fluctuations are suppressed, we
explictly see the matching between the deterministic FKPP description and the
microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a
Rapid Communicatio
Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems
The master equation approach to Lyapunov spectra for many-particle systems is
applied to non-equilibrium thermostatted systems to discuss the conjugate
pairing rule. We consider iso-kinetic thermostatted systems with a shear flow
sustained by an external restriction, in which particle interactions are
expressed as a Gaussian white randomness. Positive Lyapunov exponents are
calculated by using the Fokker-Planck equation to describe the tangent vector
dynamics. We introduce another Fokker-Planck equation to describe the
time-reversed tangent vector dynamics, which allows us to calculate the
negative Lyapunov exponents. Using the Lyapunov exponents provided by these two
Fokker-Planck equations we show the conjugate pairing rule is satisfied for
thermostatted systems with a shear flow in the thermodynamic limit. We also
give an explicit form to connect the Lyapunov exponents with the
time-correlation of the interaction matrix in a thermostatted system with a
color field.Comment: 10 page
Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo
Most data on the therapeutic potential of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as resistance to FAS ligand (FASL) in colorectal cancer have come from in vitro studies using cell lines. To gain a clearer understanding about the susceptibility of patient tumours to TRAIL and FASL, we derived primary human cancer epithelial cells from colon cancer patients. Characterisation of primary cultures PAP60 and MIH55 determined their highly proliferating advantage, transforming capability and tumorigenicity in vitro and in vivo. Although FASL treatment appeared to cause little apoptosis only in the PAP60 primary culture, increased apoptosis independent of p53 was observed in both primary PAP60 and MIH55 and control cell lines Caco-2, HT29 and DLD-1 after treatment with SuperKiller TRAIL. Expression analysis of death receptors (DR) in the original parental tumours, the primary cultures before and after engraftment as well as the mouse xenografts, revealed a significant upregulation of both DR4 and DR5, which correlated to differences in sensitivity of the cells to TRAIL-induced apoptosis. Treating patient tumour xenograft/SCID mouse models with Killer TRAIL in vivo suppressed tumour growth. This is the first demonstration of TRAIL-induced apoptosis in characterised tumorigenic primary human cultures (in vitro) and antitumour activity in xenograft models (in vivo)
- …