11 research outputs found

    Spatial complementarity and the coexistence of species

    Get PDF
    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation

    Spatial patterns and species performances in experimental plant communities

    No full text
    Amongst the various hypotheses that challenged to explain the coexistence of species with similar life histories, theoretical, and empirical studies suggest that spatial processes may slow down competitive exclusion and hence promote coexistence even in the absence of evident trade-offs and frequent disturbances. We investigated the effects of spatial pattern and density on the relative importance of intra- and interspecific competition in a field experiment. We hypothesized that weak competitors increased biomass and seed production within neighborhoods of conspecifics, while stronger competitors would show increased biomass and seed production within neighborhoods of heterospecifics. Seeds of four annual plant species (Capsella bursa-pastoris, Stachys annua, Stellaria media, Poa annua) were sown in two spatial patterns (aggregated vs. random) and at two densities (low vs. high) in three different species combinations (monocultures, three and four species mixtures). There was a hierarchy in biomass production among the four species and C. bursa-pastoris and S. media were among the weak competitors. Capsella and Stellaria showed increased biomass production and had more individuals in the aggregated compared to the random pattern, especially when both superior competitors (S. annua, P. annua) were present. For P. annua we observed considerable differences among species combinations and unexpected pattern effects. Our findings support the hypothesis that weak competitors increase their fitness when grown in the neighborhood of conspecifics, and suggested that for the weakest competitors the species identity is not important and all other species are best avoided through intraspecific aggregation. In addition, our data suggest that the importance of spatial pattern for the other competitors might not only depend on the position within the hierarchy but also on the identity of neighbor species, species characteristics, below ground interactions, and other nonspatial factors

    Intraspecific aggregation and soil heterogeneity: competitive interactions of two clonal plants with contrasting spatial architecture

    No full text
    Background and aims Intraspecific aggregation of plant individuals can promote species coexistence by delaying competitive exclusions. However, such impacts may differ among species with contrasting spatial architecture and rely on the spatial distribution of resources. Methods We grew a phalanx clonal plant Carex neurocarpa (with aggregated ramets) and a guerilla one Bolboschoenus planiculmis (with diffused ramets) in monocultures or in 1:1 mixtures with an even or a clustered distribution pattern of the two species in homogeneous or heterogeneous soils. Results After 16 months, shoot biomass and ramet number were greater in mixtures than in monocultures in C. neurocarpa, but smaller in B. planiculmis. However, the growth of neither C. neurocarpa nor B. planiculmis differed between even and clustered mixtures. Soil nutrient heterogeneity did not significantly affect the growth of either species, but increased relative yield of B. planiculmis and decreased that of C. neurocarpa. Conclusions The relative importance of intra- vs. interspecific competition depends on the spatial architecture of plants, and soil nutrient heterogeneity slows down competitive exclusion by decreasing differences in competitive ability between plants. However, our results do not support the idea that intraspecific aggregation of individuals alters competitive interactions between species

    Effects of spatial pattern and relatedness in an experimental plant community

    No full text
    Many plant species show limited dispersal resulting in spatial and genetic substructures within populations. Consequently, neighbours are often related between each other, resulting in sibling competition. Using seed families of the annuals Capsella bursa-pastoris and Stachys annua we investigated effects of spatial pattern (i.e. random versus aggregated) on total and individual performance at the level of species and seed families under field conditions. At the level of species, we expected that inferior competitors increase, while superior competitors decrease their performance within neighbourhoods of conspecifics. Thus, we expected a species by spatial pattern interaction. Sibling competition, however, might reduce the performance of competitors, when genetically related, rather than non-related individuals are competing. Therefore, aggregations at the level of seed families could decrease the performance of competitors. Alternatively, if the opposite outcome would be observed, kin selection might be hypothesized to have occurred in the past. Because heavy seeds are expected to disperse less than light seeds, we further hypothesized that kin selection might be more likely to occur in superior competitors with heavy, locally dispersed seeds (e.g. Stachys) compared to inferior competitors with light, more distantly dispersed seeds (e.g. Capsella). We found a significant species by spatial pattern interaction. Indeed, the inferior competitor, Capsella, showed increased reproductive biomass production in aggregated compared to random patterns. Whereas, the performance of the superior competitor, Stachys, was to some extent decreased by intraspecific aggregation. Although statistically not significant, effects of intrafamily aggregations tended to be rather negative in Capsella but positive in Stachys. Our results confirmed that spatial patterns affect growth and reproduction of plant species promoting coexistence in plant communities. Although, we could not provide strong evidence for sibling competition or kin selection, our results suggested that competition among relatives was more severe for Capsella (lighter seeds) compared to Stachys (heavier seeds)
    corecore