71 research outputs found

    ELEVATED PHENYLACETIC ACID LEVELS DO NOT CORRELATE WITH ADVERSE EVENTS IN PATIENTS WITH UREA CYCLE DISORDERS OR HEPATIC ENCEPHALOPATHY AND CAN BE PREDICTED BASED ON THE PLASMA PAA TO PAGN RATIO

    Get PDF
    Background Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100), both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. Methods The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients ≥2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Results Only 0.2% (11) of 4683 samples exceeded 500 ug/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio > 2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels > 500 μg/ml. Conclusions The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker

    The 3-methylglutaconic acidurias: what’s new?

    Get PDF
    The heterogeneous group of 3-methylglutaconic aciduria (3-MGA-uria) syndromes includes several inborn errors of metabolism biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. Five distinct types have been recognized: 3-methylglutaconic aciduria type I is an inborn error of leucine catabolism; the additional four types all affect mitochondrial function through different pathomechanisms. We provide an overview of the expanding clinical spectrum of the 3-MGA-uria types and provide the newest insights into the underlying pathomechanisms. A diagnostic approach to the patient with 3-MGA-uria is presented, and we search for the connection between urinary 3-MGA excretion and mitochondrial dysfunction

    Lowe Syndrome Protein OCRL1 Supports Maturation of Polarized Epithelial Cells

    Get PDF
    Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO)-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5′-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome

    Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies

    Full text link
    This article summarizes the present knowledge, recent developments, and common pitfalls in the diagnosis, classification, and genetics of hyperphenylalaninemia, including tetrahydrobiopterin (BH4) deficiency. It is a product of the recent workshop organized by the European Phenylketonuria Group in March 2011 in Lisbon, Portugal. Results of the workshop demonstrate that following newborn screening for phenylketonuria (PKU), using tandem mass-spectrometry, every newborn with even slightly elevated blood phenylalanine (Phe) levels needs to be screened for BH4 deficiency. Dried blood spots are the best sample for the simultaneous measurement of amino acids (phenylalanine and tyrosine), pterins (neopterin and biopterin), and dihydropteridine reductase activity from a single specimen. Following diagnosis, the patient's phenotype and individually tailored treatment should be established as soon as possible. Not only blood Phe levels, but also daily tolerance for dietary Phe and potential responsiveness to BH4 are part of the investigations. Efficiency testing with synthetic BH4 (sapropterin dihydrochloride) over several weeks should follow the initial 24-48-hour screening test with 20mg/kg/day BH4. The specific genotype, i.e. the combination of both PAH alleles of the patient, helps or facilitates to determine both the biochemical phenotype (severity of PKU) and the responsiveness to BH4. The rate of Phe metabolic disposal after Phe challenge may be an additional useful tool in the interpretation of phenotype-genotype correlation

    Genetic and Physical Mapping of the Locus for Autosomal Dominant Renal Fanconi Syndrome, on Chromosome 15q15.3

    Get PDF
    Autosomal dominant renal Fanconi syndrome is a genetic model for the study of proximal renal tubular transport pathology. We were able to map the locus for this disease to human chromosome 15q15.3 by genotyping a central Wisconsin pedigree with 10 affected individuals. After a whole-genome scan with highly polymorphic simple sequence repeat markers, a maximum LOD score of 3.01 was calculated for marker D15S659 on chromosome 15q15.3. Linkage and haplotype analysis for an additional 24 markers flanking D15S659 narrowed the interval to ∼3 cM, with the two highest single-point LOD scores observed being 4.44 and 4.68 (for D15S182 and D15S537, respectively). Subsequently, a complete bacterial artificial chromosome contig was constructed, from the High Throughput Genomic Sequence Database, for the region bounded by D15S182 and D15S143. The identification of the gene and gene product altered in autosomal dominant renal Fanconi syndrome will allow the study of the physiology of proximal renal tubular transport
    • …
    corecore