76 research outputs found

    Simulation-Based Safety Training for Plant Maintenance in Virtual Reality

    Get PDF
    This paper presents a 3-D simulation model for safety training in an interactive and fully immersive virtual environment (IVE). The training comprises application of serious games (SGs) designed for filter replacements on a gas-powered plant (GPP) engine model by participants based on plant maintenance health and safety environment (HSE) regulations. Although maintenance work on GPP constitutes significantly in the share of hazards in the industry, there is however, scanty research related to simulation-based training for safety. Research nonetheless indicates the success of this technology in other industrial fields. For this reason, this study explored the possibility for training in safe work practices during maintenance in a gamified virtual environment. The Unreal real-time 3D game engine software was employed for creating virtual objects in the simulation. In total, 38 participants individually undertook the training in the virtual realm and provided feedback on a 5-point Likert scale. Questions pursuant to the assessment included the efficacy of acquired safety knowledge and skills, proximity of the simulation-based training to reality, and the interests and preference of SGs-IVE towards safety training. Results demonstrates participant’s perception of the prospects and learning outcome of SGs-IVE towards safety training: A factor that promotes greater cognitive learning for mindful safety practices.© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021. This is a post-peer-review, pre-copyedit version of an article published in Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2020 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 16-20, 2020, USA. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-51064-0_22fi=vertaisarvioitu|en=peerReviewed

    Testing an Emerging Paradigm in Migration Ecology Shows Surprising Differences in Efficiency between Flight Modes

    Get PDF
    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors

    Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung

    Get PDF
    Periodate-treated, non-anticoagulant heparin-carrying polystyrene consists of about ten periodate-oxidized, alkaline-degraded low molecular weight-heparin chains linked to a polystyrene core and has a markedly lower anti-coagulant activity than heparin. In this study, we evaluated the effect of non-anticoagulant heparin-carrying polystyrene on tumour growth and metastasis. Non-anticoagulant heparin-carrying polystyrene has a higher activity to inhibit vascular endothelial growth factor-165-, fibroblast growth factor-2- or hepatocyte growth factor-induced human microvascular endothelial cell growth than heparin, ten periodate-oxidized-heparin and ten periodate-oxidized-low molecular weight-heparin, which is probably due to the heparin-clustering effect of non-anticoagulant heparin-carrying polystyrene. Non-anticoagulant heparin-carrying polystyrene inhibited human microvascular endothelial cell, B16 melanoma and Lewis lung cancer cell adhesion to Matrigel-coated plates. Non-anticoagulant heparin-carrying polystyrene also showed strong inhibitory activities in the tubular formation of endothelial cells on Matrigel and B16-melanoma and Lewis lung cancer cell invasion in a Matrigel-coated chamber assay. In vivo studies showed that growth of subcutaneous induced tumours and lung metastasis of B16-melanoma and Lewis lung cancer cells were more effectively inhibited by non-anticoagulant heparin-carrying polystyrene than ten periodate-oxidized-heparin and ten periodate-oxidized-low molecular weight-heparin. Furthermore, non-anticoagulant heparin-carrying polystyrene markedly reduced the number of CD34-positive vessels in subcutaneous Lewis lung cancer tumours, indicating a strong inhibition of angiogenesis. These results suggest that non-anticoagulant heparin-carrying polystyrene has an inhibitory activity on angiogenesis and tumour invasion and may be very useful in cancer therapy

    Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for Adeno-Associated Virus Type 2 Virions

    Get PDF
    The human parvovirus adeno-associated virus (AAV) infects a broad range of cell types, including human, nonhuman primate, canine, murine, and avian. Although little is known about the initial events of virus infection, AAV is currently being developed as a vector for human gene therapy. Using defined mutant CHO cell lines and standard biochemical assays, we demonstrate that heparan sulfate proteoglycans mediate both AAV attachment to and infection of target cells. Competition experiments using heparin, a soluble receptor analog, demonstrated dose-dependent inhibition of AAV attachment and infection. Enzymatic removal of heparan but not chondroitin sulfate moieties from the cell surface greatly reduced AAV attachment and infectivity. Finally, mutant cell lines that do not produce heparan sulfate proteoglycans were significantly impaired for both AAV binding and infection. This is the first report that proteoglycan has a role in cellular attachment of a parvovirus. Together, these results demonstrate that membrane-associated heparan sulfate proteoglycan serves as the viral receptor for AAV type 2, and provide an explanation for the broad host range of AAV. Identification of heparan sulfate proteoglycan as a viral receptor should facilitate development of new reagents for virus purification and provide critical information on the use of AAV as a gene therapy vector

    Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment

    No full text
    HS (heparan sulphate) plays a key role in angiogenesis, by interacting with growth factors required in the process. It has been proposed that HS controls the diffusion, and thus the availability, of platelet-derived growth factor B that is needed for pericyte recruitment around newly formed capillaries. The present paper summarizes our studies on the importance of HS structure in this regulatory process

    Tissue diagnostics using laser-induced fluorescence

    No full text
    We have performed extensive investigations of laser-induced fluorescence in animal and human tissue aimed at instant tissue characterization. Autofluorescence, as well as specific fluorescence from HPD/DHE and other photosensitizers, has been utilized. The studies have been focused on the demarcation of malignant tumours and atheroscleortic plaques. A nitrogen laser or an excimer-pumped dye laser was used to induce fluorescence, which was analysed with an intensified optical multichannel system. A fibre-optic sensor system was developed for the clinical work. Multi-colour fluorescence imaging has also been demonstrated along a line and equipment for two-dimensional imaging is being constructed. Dimensionless spectroscopic functions, which are not affected by factors that are clinically uncontrollable have been employed for optimum tissue discrimination. The investigations have so far been performed in a time-integrated mode, but time-resolved studies are now being initiated to fully exploit the diagnostic power of tissue laser-induced fluorescence. In addition to a presentation of our own work a brief review of tissue fluorescence studies performed by other groups is also given
    corecore