1,817 research outputs found

    The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide: a stabiliser for the synthesis and dispersion of magnetite nanoparticles

    Get PDF
    A facile synthetic route to poly(ethylene imine)-graft-poly(oligo(ethylene glycol methyl ether)) (PEI-graft-POEGMA) functionalised superparamagnetic magnetite nanoparticles is described. The polymerisation of OEGMA from a model molecular amide demonstrated the feasibility of POEGMA synthesis under mild ATRP conditions (20 °C in ethanol) albeit with low initiator efficiencies. DFT studies suggest that the amide functionality is intrinsically of lower activity than ester functional monomers and initiators for atom transfer polymerisation (ATRP) as a consequence of higher bond dissociation energies and bond dissociation free energies (BDFE). However these studies further highlighted that use of an appropriate solvent could reduce the free energy of dissociation thereby reducing the relative difference in BDFE between the ester and amide groups. A commercial branched PEI sample was functionalised by reaction with 2-bromo-2-methylpropanoyl bromide giving an amide macroinitiator suitable for the atom transfer radical polymerisation (ATRP) of oligo(ethylene glycol methyl ether) methacrylate. The resulting PEI-graft-POEGMA copolymers were characterised by SEC, FT-IR and 1H and 13C NMR spectroscopy. PEI-graft-POEGMA coated magnetite nanoparticles were synthesised by a basic aqueous co-precipitation method and were characterised by transmission electron microscopy, thermogravimetric analysis and vibrating sample magnetometry and dynamic light scattering. These copolymer coated magnetite nanoparticles were demonstrated to be effectively stabilised in an aqueous medium. Overall the particle sizes and magnetic and physical properties of the coated samples were similar to those of uncoated samples

    Self-Consistency and Calibration of Cluster Number Count Surveys for Dark Energy

    Full text link
    Cluster number counts offer sensitive probes of the dark energy if and only if the_evolution_ of the cluster mass versus observable relation(s) is well calibrated. We investigate the potential for internal calibration by demanding consistency in the counts as a function of the observable. In the context of a constant dark energy equation of state, known initial fluctuation amplitude expected from the CMB, universal underlying mass function, and an idealized selection, we find that the ambiguity from the normalization of the mass-observable relationships, or an extrapolation of external mass-observable determinations from higher masses, can be largely eliminated with a sufficiently deep survey, even allowing for an arbitrary evolution. More generally, number counts as a function of both the redshift and the observable enable strong consistency tests on assumptions made in modelling the mass-observable relations and cosmology.Comment: 4 pages, 3 figures, submitted to PRD rapid communication

    A Statistical Performance Analysis of Graph Clustering Algorithms

    Get PDF
    Measuring graph clustering quality remains an open problem. Here, we introduce three statistical measures to address the problem. We empirically explore their behavior under a number of stress test scenarios and compare it to the commonly used modularity and conductance. Our measures are robust, immune to resolution limit, easy to intuitively interpret and also have a formal statistical interpretation. Our empirical stress test results confirm that our measures compare favorably to the established ones. In particular, they are shown to be more responsive to graph structure, less sensitive to sample size and breakdowns during numerical implementation and less sensitive to uncertainty in connectivity. These features are especially important in the context of larger data sets or when the data may contain errors in the connectivity patterns

    Evidence for two distinct anisotropies in the oxypnictide superconductors SmFeAsO_(0.8)F_(0.2) and NdFeAsO_(0.8)F_(0.2)

    Full text link
    Single crystals of the oxypnictide superconductors SmFeAsO_(0.8)F_(0.2) and NdFeAsO_(0.8)F_(0.2) with T_c in the range of 44 K to 48 K were investigated by torque magnetometry. An analysis of the data in terms of a recently proposed model for the anisotropic magnetization in the superconducting state, treating the penetration depth anisotropy differently than the upper critical field anisotropy, provides evidence that in the oxypnictide superconductors two distinct anisotropies are present. As a result the penetration depth anisotropy differs significantly in magnitude and in temperature dependence from the upper critical field anisotropy, analogous to MgB_2 but with a reversed sign of slope. This scenario strongly suggests a new multi-band mechanism in the novel class of oxypnictide high-temperature superconductors.Comment: published online in J. Supercond. Nov. Mag

    Probing Primordial Non-Gaussianity with Large-Scale Structure

    Full text link
    We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential parametrized by a non-linear coupling parameter fnl. We study constraints on fnl from measurements of the galaxy bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys and realistic ones from SDSS mock catalogs, we show that it is possible to probe |fnl|~100, after marginalization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey, and obtain a 2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to constrain fnl and find that in order to be sensitive to |fnl|~100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect knowledge of the mass function and cosmological parameters.Comment: 15 pages, 7 figure

    The 21 cm Signature of Cosmic String Wakes

    Full text link
    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1=30z + 1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at zi+1=103z_i + 1 = 10^3, then at a redshift of z+1=30z + 1 = 30 the critical value of the string tension μ\mu is Gμ=6×10−7G \mu = 6 \times 10^{-7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.Comment: 11 pages, 4 figures; a couple of comments added in the discussion sectio

    PP1 promotes cyclin B destruction and the metaphase–anaphase transition by dephosphorylating CDC20

    Get PDF
    Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 promotes cyclin B destruction at the onset of anaphase by removing specific inhibitory phosphorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphorylation–defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint response and rapidly destroy cyclin B once all chromosomes have aligned and enter into anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells

    Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures

    Get PDF
    Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is developed to relate the observed fluctuations to the statistics of single particle wavefunctions. In a quantitative theory correlation functions are calculated. By comparing the experimental and theoretical correlation functions the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on energy is extracted.Comment: 41 pages, 14 figure
    • …
    corecore