149 research outputs found
Inelastic Decay of Electrons in the Shockley-type Metal-Organic Interface States
We present a theoretical study of lifetimes of interface states (IS) on
metal-organic interfaces PTCDA/Ag(111), NTCDA/Ag(111), PFP/Ag(111), and
PTCDA/Ag(100), describing and explaining the recent experimental data. By means
of unfolding the band structure of one of the interfaces under study onto the
Ag(111) Brillouin zone we demonstrate, that the Brillouin zone folding upon
organic monolayer deposition plays a minor role in the phase space for electron
decay, and hence weakly affects the resulting lifetimes. The presence of the
unoccupied molecular states below the IS gives a small contribution to the IS
decay rate mostly determined by the change of the phase space of bulk states
upon the energy shift of the IS. The calculated lifetimes follow the
experimentally observed trends. In particular, we explain the trend of the
unusual increase of the IS lifetimes with rising temperature.Comment: 8 pages, 5 figure
Routing Games over Time with FIFO policy
We study atomic routing games where every agent travels both along its
decided edges and through time. The agents arriving on an edge are first lined
up in a \emph{first-in-first-out} queue and may wait: an edge is associated
with a capacity, which defines how many agents-per-time-step can pop from the
queue's head and enter the edge, to transit for a fixed delay. We show that the
best-response optimization problem is not approximable, and that deciding the
existence of a Nash equilibrium is complete for the second level of the
polynomial hierarchy. Then, we drop the rationality assumption, introduce a
behavioral concept based on GPS navigation, and study its worst-case efficiency
ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201
Computing Stable Coalitions: Approximation Algorithms for Reward Sharing
Consider a setting where selfish agents are to be assigned to coalitions or
projects from a fixed set P. Each project k is characterized by a valuation
function; v_k(S) is the value generated by a set S of agents working on project
k. We study the following classic problem in this setting: "how should the
agents divide the value that they collectively create?". One traditional
approach in cooperative game theory is to study core stability with the
implicit assumption that there are infinite copies of one project, and agents
can partition themselves into any number of coalitions. In contrast, we
consider a model with a finite number of non-identical projects; this makes
computing both high-welfare solutions and core payments highly non-trivial.
The main contribution of this paper is a black-box mechanism that reduces the
problem of computing a near-optimal core stable solution to the purely
algorithmic problem of welfare maximization; we apply this to compute an
approximately core stable solution that extracts one-fourth of the optimal
social welfare for the class of subadditive valuations. We also show much
stronger results for several popular sub-classes: anonymous, fractionally
subadditive, and submodular valuations, as well as provide new approximation
algorithms for welfare maximization with anonymous functions. Finally, we
establish a connection between our setting and the well-studied simultaneous
auctions with item bidding; we adapt our results to compute approximate pure
Nash equilibria for these auctions.Comment: Under Revie
Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q
Modularity Q is an important function for identifying community structure in
complex networks. In this paper, we prove that the modularity maximization
problem is equivalent to a nonconvex quadratic programming problem. This result
provide us a simple way to improve the efficiency of heuristic algorithms for
maximizing modularity Q. Many numerical results demonstrate that it is very
effective.Comment: 9 pages, 3 figure
Size reduction of complex networks preserving modularity
The ubiquity of modular structure in real-world complex networks is being the
focus of attention in many trials to understand the interplay between network
topology and functionality. The best approaches to the identification of
modular structure are based on the optimization of a quality function known as
modularity. However this optimization is a hard task provided that the
computational complexity of the problem is in the NP-hard class. Here we
propose an exact method for reducing the size of weighted (directed and
undirected) complex networks while maintaining invariant its modularity. This
size reduction allows the heuristic algorithms that optimize modularity for a
better exploration of the modularity landscape. We compare the modularity
obtained in several real complex-networks by using the Extremal Optimization
algorithm, before and after the size reduction, showing the improvement
obtained. We speculate that the proposed analytical size reduction could be
extended to an exact coarse graining of the network in the scope of real-space
renormalization.Comment: 14 pages, 2 figure
LP-based Covering Games with Low Price of Anarchy
We present a new class of vertex cover and set cover games. The price of
anarchy bounds match the best known constant factor approximation guarantees
for the centralized optimization problems for linear and also for submodular
costs -- in contrast to all previously studied covering games, where the price
of anarchy cannot be bounded by a constant (e.g. [6, 7, 11, 5, 2]). In
particular, we describe a vertex cover game with a price of anarchy of 2. The
rules of the games capture the structure of the linear programming relaxations
of the underlying optimization problems, and our bounds are established by
analyzing these relaxations. Furthermore, for linear costs we exhibit linear
time best response dynamics that converge to these almost optimal Nash
equilibria. These dynamics mimic the classical greedy approximation algorithm
of Bar-Yehuda and Even [3]
Recommended from our members
A compact laboratory transmission X-ray microscope for the water window
In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment
IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury
Fast unfolding of communities in large networks
We propose a simple method to extract the community structure of large
networks. Our method is a heuristic method that is based on modularity
optimization. It is shown to outperform all other known community detection
method in terms of computation time. Moreover, the quality of the communities
detected is very good, as measured by the so-called modularity. This is shown
first by identifying language communities in a Belgian mobile phone network of
2.6 million customers and by analyzing a web graph of 118 million nodes and
more than one billion links. The accuracy of our algorithm is also verified on
ad-hoc modular networks. .Comment: 6 pages, 5 figures, 1 table; new version with new figures in order to
clarify our method, where we look more carefully at the role played by the
ordering of the nodes and where we compare our method with that of Wakita and
Tsurum
- …