467 research outputs found
Performance of one-body reduced density matrix functionals for the homogeneous electron gas
The subject of this study is the exchange-correlation-energy functional of
reduced density matrix functional theory. Approximations of this functional are
tested by applying them to the homogeneous electron gas. We find that two
approximations recently proposed by Gritsenko, Pernal, and Baerends, J. Chem.
Phys., {\bf 122}, 204102 (2005), yield considerably better correlation energies
and momentum distributions than previously known functionals. We introduce
modifications to these functionals which, by construction, reproduce the exact
correlation energy of the homogeneous electron gas
Discontinuity of the chemical potential in reduced-density-matrix-functional theory
We present a novel method for calculating the fundamental gap. To this end,
reduced-density-matrix-functional theory is generalized to fractional particle
number. For each fixed particle number, , the total energy is minimized with
respect to the natural orbitals and their occupation numbers. This leads to a
function, , whose derivative with respect to the particle
number has a discontinuity identical to the gap. In contrast to density
functional theory, the energy minimum is generally not a stationary point of
the total-energy functional. Numerical results, presented for alkali atoms, the
LiH molecule, the periodic one-dimensional LiH chain, and solid Ne, are in
excellent agreement with CI calculations and/or experimental data.Comment: 9 pages, 3 figures, version as publishe
Open shells in reduced-density-matrix-functional theory
Reduced-density-matrix-functional theory is applied to open-shell systems. We
introduce a spin-restricted formulation by appropriately expressing approximate
correlation-energy functionals in terms of spin-dependent occupation numbers
and spin-independent natural orbitals. We demonstrate that the additional
constraint of total-spin conservation is indispensable for the proper treatment
of open-shell systems. The formalism is applied to the first-row open-shell
atoms. The obtained ground-state energies are in very good agreement with the
exact values as well as other state of the art quantum chemistry calculationsComment: 4 pages, 2 figures, corrected typo
Exchange-energy functionals for finite two-dimensional systems
Implicit and explicit density functionals for the exchange energy in finite
two-dimensional systems are developed following the approach of Becke and
Roussel [Phys. Rev. A 39, 3761 (1989)]. Excellent agreement for the
exchange-hole potentials and exchange energies is found when compared with the
exact-exchange reference data for the two-dimensional uniform electron gas and
few-electron quantum dots, respectively. Thereby, this work significantly
improves the availability of approximate density functionals for dealing with
electrons in quasi-two-dimensional structures, which have various applications
in semiconductor nanotechnology.Comment: 5 pages, 3 figure
Exchange-correlation orbital functionals in current-density-functional theory: Application to a quantum dot in magnetic fields
The description of interacting many-electron systems in external magnetic
fields is considered in the framework of the optimized effective potential
method extended to current-spin-density functional theory. As a case study, a
two-dimensional quantum dot in external magnetic fields is investigated.
Excellent agreement with quantum Monte Carlo results is obtained when
self-interaction corrected correlation energies from the standard local
spin-density approximation are added to exact-exchange results. Full
self-consistency within the complete current-spin-density-functional framework
is found to be of minor importance.Comment: 5 pages, 2 figures, submitted to PR
Optimized Effective Potential Method in Current-Spin Density Functional Theory
Current-spin density functional theory (CSDFT) provides a framework to
describe interacting many-electron systems in a magnetic field which couples to
both spin- and orbital-degrees of freedom. Unlike in usual (spin-) density
functional theory, approximations to the exchange-correlation energy based on
the model of the uniform electron gas face problems in practical applications.
In this work, explicitly orbital-dependent functionals are used and a
generalization of the Optimized Effective Potential (OEP) method to the CSDFT
framework is presented. A simplifying approximation to the resulting integral
equations for the exchange-correlation potentials is suggested. A detailed
analysis of these equations is carried out for the case of open-shell atoms and
numerical results are given using the exact-exchange energy functional. For
zero external magnetic field, a small systematic lowering of the total energy
for current-carrying states is observed due to the inclusion of the current in
the Kohn-Sham scheme. For states without current, CSDFT results coincide with
those of spin density functional theory.Comment: 11 pages, 3 figure
Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator.
Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator's performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge
A functional of the one-body-reduced density matrix derived from the homogeneous electron gas: Performance for finite systems
An approximation for the exchange-correlation energy of
reduced-density-matrix-functional theory was recently derived from a study of
the homogeneous electron gas (N.N. Lathiotakis, N. Helbig, E.K.U. Gross, Phys.
Rev. B 75, 195120 (2007)). In the present work, we show how this approximation
can be extended appropriately to finite systems, where the Wigner Seitz radius
r_s, the parameter characterizing the constant density of the electron gas,
needs to be replaced. We apply the functional to a variety of molecules at
their equilibrium geometry, and also discuss its performance at the
dissociation limit. We demonstrate that, although originally derived from the
uniform gas, the approximation performs remarkably well for finite systems.Comment: 5 pages, 2 figuere
Discontinuity of the chemical potential in RDMFT for open-shell systems
We employ reduced density-matrix functional theory in the calculation of the
fundamental gap of open-shell systems. The formula for the calculation of the
fundamental gap is derived with special attention to the spin of the neutral
and the charged systems. We discuss the effects of different functionals as
well as the changes due to different basis sets. Also, we investigate the
importance of varying the natural orbitals for the calculation of the
fundamental gapComment: 9 pages, 6 figures, submitted to Phys. Rev.
Revisiting the role of H+ in chemotactic signaling of sperm
© 2004 Solzin et al. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. The definitive version was published in Journal of General Physiology 124 (2004): 115-124, doi:10.1085/jgp.200409030.Chemotaxis of sperm is an important step toward fertilization. During chemotaxis, sperm change their swimming behavior in a gradient of the chemoattractant that is released by the eggs, and finally sperm accumulate near the eggs. A well established model to study chemotaxis is the sea urchin Arbacia punctulata. Resact, the chemoattractant of Arbacia, is a peptide that binds to a receptor guanylyl cyclase. The signaling pathway underlying chemotaxis is still poorly understood. Stimulation of sperm with resact induces a variety of cellular events, including a rise in intracellular pH (pHi) and an influx of Ca2+; the Ca2+ entry is essential for the chemotactic behavior. Previous studies proposed that the influx of Ca2+ is initiated by the rise in pHi. According to this proposal, a cGMP-induced hyperpolarization activates a voltage-dependent Na+/H+ exchanger that expels H+ from the cell. Because some aspects of the proposed signaling pathway are inconsistent with recent results (Kaupp, U.B., J. Solzin, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, E. Hildebrand, and I. Weyand. 2003. Nat. Cell Biol. 5:109–117), we reexamined the role of protons in chemotaxis of sperm using kinetic measurements of the changes in pHi and intracellular Ca2+ concentration. We show that for physiological concentrations of resact (<25 pM), the influx of Ca2+ precedes the rise in pHi. Moreover, buffering of pHi completely abolishes the resact-induced pHi signal, but leaves the Ca2+ signal and the chemotactic motor response unaffected. We conclude that an elevation of pHi is required neither to open Ca2+-permeable channels nor to control the chemotactic behavior. Intracellular release of cGMP from a caged compound does not cause an increase in pHi, indicating that the rise in pHi is induced by cellular events unrelated to cGMP itself, but probably triggered by the consumption and subsequent replenishment of GTP. These results show that the resact-induced rise in pHi is not an obligatory step in sperm chemotactic signaling. A rise in pHi is also not required for peptide-induced Ca2+ entry into sperm of the sea urchin Strongylocentrotus purpuratus. Speract, a peptide of S. purpuratus may act as a chemoattractant as well or may serve functions other than chemotaxis.This work was supported by a grant from the Deutsche Forschungsgemeinschaft
- …