53 research outputs found

    Transport mode choice and body mass index: Cross-sectional and longitudinal evidence from a European-wide study.

    Get PDF
    BACKGROUND: In the fight against rising overweight and obesity levels, and unhealthy urban environments, the renaissance of active mobility (cycling and walking as a transport mode) is encouraging. Transport mode has been shown to be associated to body mass index (BMI), yet there is limited longitudinal evidence demonstrating causality. We aimed to associate transport mode and BMI cross-sectionally, but also prospectively in the first ever European-wide longitudinal study on transport and health. METHODS: Data were from the PASTA project that recruited adults in seven European cities (Antwerp, Barcelona, London, Oerebro, Rome, Vienna, Zurich) to complete a series of questionnaires on travel behavior, physical activity levels, and BMI. To assess the association between transport mode and BMI as well as change in BMI we performed crude and adjusted linear mixed-effects modeling for cross-sectional (n = 7380) and longitudinal (n = 2316) data, respectively. RESULTS: Cross-sectionally, BMI was 0.027 kg/m2 (95%CI 0.015 to 0.040) higher per additional day of car use per month. Inversely, BMI was -0.010 kg/m2 (95%CI -0.020 to -0.0002) lower per additional day of cycling per month. Changes in BMI were smaller in the longitudinal within-person assessment, however still statistically significant. BMI decreased in occasional (less than once per week) and non-cyclists who increased cycling (-0.303 kg/m2, 95%CI -0.530 to -0.077), while frequent (at least once per week) cyclists who stopped cycling increased their BMI (0.417 kg/m2, 95%CI 0.033 to 0.802). CONCLUSIONS: Our analyses showed that people lower their BMI when starting or increasing cycling, demonstrating the health benefits of active mobility

    Flexible mapping of homology onto structure with Homolmapper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decade, a number of tools have emerged for the examination of homology relationships among protein sequences in a structural context. Most recent software implementations for such analysis are tied to specific molecular viewing programs, which can be problematic for collaborations involving multiple viewing environments. Incorporation into larger packages also adds complications for users interested in adding their own scoring schemes or in analyzing proteins incorporating unusual amino acid residues such as selenocysteine.</p> <p>Results</p> <p>We describe homolmapper, a command-line application for mapping information from a multiple protein sequence alignment onto a protein structure for analysis in the viewing software of the user's choice. Homolmapper is small (under 250 K for the application itself) and is written in Python to ensure portability. It is released for non-commercial use under a modified University of California BSD license. Homolmapper permits facile import of additional scoring schemes and can incorporate arbitrary additional amino acids to allow handling of residues such as selenocysteine or pyrrolysine. Homolmapper also provides tools for defining and analyzing subfamilies relative to a larger alignment, for mutual information analysis, and for rapidly visualizing the locations of mutations and multi-residue motifs.</p> <p>Conclusion</p> <p>Homolmapper is a useful tool for analysis of homology relationships among proteins in a structural context. There is also extensive, example-driven documentation available. More information about homolmapper is available at <url>http://www.mcb.ucdavis.edu/faculty-labs/lagarias/homolmapper_home/homolmapper%20web%20page.htm</url>.</p

    The Smart City Active Mobile Phone Intervention (SCAMPI) study to promote physical activity through active transportation in healthy adults: a study protocol for a randomised controlled trial

    Full text link
    Abstract Background The global pandemic of physical inactivity represents a considerable public health challenge. Active transportation (i.e., walking or cycling for transport) can contribute to greater total physical activity levels. Mobile phone-based programs can promote behaviour change, but no study has evaluated whether such a program can promote active transportation in adults. This study protocol presents the design and methodology of The Smart City Active Mobile Phone Intervention (SCAMPI), a randomised controlled trial to promote active transportation via a smartphone application (app) with the aim to increase physical activity. Methods/design A two-arm parallel randomised controlled trial will be conducted in Stockholm County, Sweden. Two hundred fifty adults aged 20–65 years will be randomised to either monitoring of active transport via the TRavelVU app (control), or to a 3-month evidence-based behaviour change program to promote active transport and monitoring of active travel via the TRavelVU Plus app (intervention). The primary outcome is moderate-to-vigorous intensity physical activity (MVPA in minutes/day) (ActiGraph wGT3x-BT) measured post intervention. Secondary outcomes include: time spent in active transportation measured via the TRavelVU app, perceptions about active transportation (the Transport and Physical Activity Questionnaire (TPAQ)) and health related quality of life (RAND-36). Assessments are conducted at baseline, after the completed intervention (after 3 months) and 6 months post randomisation. Discussion SCAMPI will determine the effectiveness of a smartphone app to promote active transportation and physical activity in an adult population. If effective, the app has potential to be a low-cost intervention that can be delivered at scale. Trial registration ClinicalTrials.gov NCT03086837; 22 March, 2017

    The increased intensity of the first sharp diffraction peak of a NaPO3NaPO_3 melt

    No full text
    The most striking change in the x-ray diffraction pattern of glass which takes place during melting is the generation of a strong first sharp diffraction peak (FSDP). Starting from a model of glass and using reverse Monte Carlo simulations, the structure of molten is approximated by replacing the ions with ions and displacing them in a random manner within the extended cages originally occupied by the larger ions. In this way the increased vibrations and the additional diffusive motion of the ions are taken into account. This motion requires considerably more room in the melt than is occupied by the cations in the glass. The model reproduces the structure factor of the melt, including the FSDP, and explains the disappearance of the peak at 0.35 nm in the total pair distribution function

    Preliminary crystallographic studies of citrate synthase from an Antarctic psychrotolerant bacterium

    No full text
    Recombinant citrate synthase from a psychrotolerant bacterium, DS2-3R, recently isolated in Antarctica, has been crystallized. The crystals belong to space group P6(1)22 or P6(5)22, with cell dimensions a = b = 70.8, c = 307.8 Angstrom. Diffraction data collected on a synchrotron from a cryoprotected crystal extend to at least 2.0 Angstrom. Knowledge of the structure of this enzyme Rill add to the understanding of told activity and thermolability and will be of biotechnological interest. Previously, the structure of citrate synthase from Archaea inhabiting environments at 328 and 373 K, has been reported. This present study will extend our understanding of the structural integrity and activity of proteins at the temperature extremes of life.</p
    corecore