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Abstract 

Background 

In the fight against rising overweight and obesity levels, and unhealthy urban environments, 

the renaissance of active mobility (cycling and walking as a transport mode) is encouraging. 

Transport mode has been shown to be associated to body mass index (BMI), yet there is 

limited longitudinal evidence demonstrating causality. We aimed to associate transport mode 

and BMI cross-sectionally, but also prospectively in the first ever European-wide longitudinal 

study on transport and health. 

Methods 

Data were from the PASTA project that recruited adults in seven European cities (Antwerp, 

Barcelona, London, Oerebro, Rome, Vienna, Zurich) to complete a series of questionnaires on 

travel behavior, physical activity levels, and BMI. To assess the association between transport 

mode and BMI as well as change in BMI we performed crude and adjusted linear mixed-effects 

modeling for cross-sectional (n=7380) and longitudinal (n=2316) data, respectively. 

Results 

Cross-sectionally, BMI was 0.027 kg/m² (95%CI 0.015 to 0.040) higher per additional day of car 

use per month. Inversely, BMI was -0.010 kg/m² (95%CI -0.020 to -0.0002) lower per additional 

day of cycling per month. Changes in BMI were smaller in the longitudinal within-person 

assessment, however still statistically significant. BMI decreased in occasional (less than once 

per week) and non-cyclists who increased cycling (-0.303 kg/m², 95%CI -0.530 to -0.077), while 

frequent (at least once per week) cyclists who stopped cycling increased their BMI (0.417 

kg/m², 95%CI 0.033 to 0.802).  

Conclusions 

Our analyses showed that people lower their BMI when starting or increasing cycling, 

demonstrating the health benefits of active mobility. 
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Introduction 

Europe is facing an overweight and obesity epidemic (Berghöfer and others 2008). A relatively 

new approach to tackle this problem is through increasing physical activity levels as part of 

daily routines, which includes commuting to work or education, notably through walking or 

cycling (referred to as active mobility). While a rise in population obesity coincides with a 

decrease in physical activity, countries where active mobility is most common also happen to 

have the lowest obesity rates (Bassett and others 2008; Prentice and Jebb 1995; Pucher and 

others 2010). Although this association does not prove causality, it warrants further 

investigation. 

 

The use of different transport modes, e.g. car driving, walking and cycling, requires different 

energy expenditure and this may be related to body weight and body mass index (BMI). 

Wanner and colleagues reviewed 30 studies (mainly cross-sectional studies, with only one 

longitudinal study in middle-aged men) evaluating associations between the use of active 

mobility and body weight: in 25 of these studies an association was found (Wanner and others 

2012). There is also evidence that active mobility adds to total physical activity, and that 

physical activity reduces body weight (Celis-Morales and others 2017a; Physical Activity 

Guidelines Advisory Committee 2008; Wanner and others 2012). These associations suggest 

that physical activity may act as a mediator in the relationship between active mobility and 

body weight. Similarly, within transport modes there may be differences in body weight and 

BMI that could be explained by a different use. Martin and colleagues found a larger reduction 

in BMI among those switching to active mobility with journey times over 30 minutes compared 

to those traveling for less than 10 minutes (Martin and others 2015). Celis-Morales and 

colleagues found that cycling longer distances was more strongly associated with health 

outcomes (incident cardiovascular disease, cancer, and mortality) than cycling shorter 

distances; and cycling shorter distances was better than no cycling (Celis-Morales and others 

2017b). Considering all of this, it seems plausible that active mobility acts as a key factor in 

body weight management through transport-related physical activity. However, this 

association may also be driven by reverse causality: lean individuals might be more likely to 

walk or cycle (further) than overweight individuals (Ekelund and others 2008; Ekelund and 

others 2017; Wanner and others 2012). 

 

This study aimed to address several gaps in the existing literature. Foremost, we included a 

longitudinal assessment to investigate the association between active mobility and BMI – 

longitudinal or intervention studies are essential to study the direction and size of the effect 
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and changes over time, and estimate the importance of self-selection or other confounding 

variables (Faulkner and others 2009; Xu and others 2013). The few longitudinal studies that are 

available are national studies, mainly in the UK and US; to the best of our knowledge, no 

international multicenter studies have been reported (Bell and others 2002; Braun and others 

2016; Flint and others 2016; Martin and others 2015; Mytton and others 2016). We included 

seven European cities in our study, with different baseline levels of BMI and physical activity 

levels, different climates, different built environment and transport infrastructure, and a 

varying share of transport modes to increase generalizability and representativeness (Table 

S1).  

There is a lack of standardized definitions and measurements (self-reported or measured) to 

identify a dominant transport mode or to quantify the amount of active mobility leading to 

imprecise exposure assessment and bias in the results (Wanner and others 2012; Xu and 

others 2013). The heterogeneity of studies makes it nearly impossible to perform a meta-

analysis or to compare effect sizes found in different studies. Moreover, a number of other 

factors, like occupational or leisure-time physical activity or diet, could alter the association 

between transport mode and BMI (Aadahl and others 2007; Aires and others 2003; Celis-

Morales and others 2017a; Flint and Cummins 2016; Kim and others 2017).  

 

The overall aim of this study is therefore to evaluate the association between transport mode 

choice and BMI in an international multicenter longitudinal study, while accounting for a 

number of known influencers. Additionally, we wanted to compare the cross-sectional and the 

longitudinal approach.  
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Materials & methods 

Study design 

An online questionnaire on physical activity, travel behavior and health was developed as part 

of the pan-European PASTA project (Physical Activity through Sustainable Transport 

Approaches) (Dons and others 2015). Participants were opportunistically recruited in seven 

cities (Antwerp, Barcelona, London, Oerebro, Rome, Vienna, Zurich). Several recruitment 

methods were applied simultaneously with the most successful being direct targeting of local 

stakeholders, community groups, and workplaces, and the use of social media. In order to 

have sufficiently large sample sizes for different transport modes, users of rare transport 

modes were oversampled with targeted actions. A sample size of 2000 registrations per city 

was aimed for, taking into consideration attrition during follow-up. Finally, 10,722 participants 

entered the study on a rolling basis between November 2014 and November 2016 by filling 

out a baseline questionnaire (t0). In November 2016 all participants who finished the baseline 

questionnaire were invited to complete a final questionnaire (t1). Short follow-up 

questionnaires were sent every two weeks between t0 and t1 (Dons and others 2015). To 

increase response rates and ensure understanding of the questions, all questionnaires could 

be completed in the local language. Data quality and completeness was guaranteed by 

including a number of programming rules and constraints in the questionnaires. Participants 

had to be 18 years of age (16 years in Zurich) or older, and had to give informed consent at 

registration. Data handling and ethical considerations regarding confidentiality and privacy of 

the information collected, are reported in the study protocol (Dons and others 2015). 

 

Outcome variables 

Body mass index (BMI; weight (kg) / height (m²)), as a direct risk indicator of disease, was the 

outcome of interest. 8789 participants provided at least a valid height and weight (14 kg/cm² < 

BMI < 45 kg/cm²) in the baseline questionnaire; 3292 of them additionally provided a valid 

height and weight in the final questionnaire. Height and weight were self-reported, but 

weights were well correlated in a validation subsample of 119 participants using direct 

measurements (r = 0.95; underreported by 2.4 kg on average; supplemental material). 

Differences between self-reported and measured weight were non-differential between the 

different transport modes. Absolute change in BMI over the follow-up period was calculated 

by subtracting t0 data from t1 data (for the longitudinal analysis). 

 

Exposure variables 
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Non-recreational transport mode usage was quantified using the question “How often do you 

currently use each of the following methods of travel to get to and from places?”, rated on a 

five-point scale ranging from “Daily or almost daily” to “Never” (Table S2). Modes considered 

were walking, cycling, e-biking (electrically assisted cycling), motorcycle or moped, public 

transport, and car or van. Subsequently, frequencies were assigned to each of the categories, 

transforming this into a days-per-month variable (“Daily or almost daily” = 24 days per month; 

“on 1-3 days per week” = 8 days per month; “on 1-3 days per month” = 2 days per month; 

“Less than once per month” = 1 day per month; “Never” = 0 days per month). For the 

longitudinal assessment, absolute changes in frequency between t0 and t1 were calculated. 

Secondly, a categorical variable looking at cycling frequency was considered: participants were 

categorized as frequent cyclist (at least once per week), occasional cyclist (less than once per 

week), or non-cyclist. Changes between groups were considered in the longitudinal study. 

 

Covariates 

Several covariates were hypothesized to possibly confound the association between BMI and 

transport mode (Flint and Cummins 2016; Mytton and others 2016). Socio-demographic 

covariates considered in the analyses were age, sex, and education level. Occupational physical 

activity and leisure-time physical activity were included to adjust for other physical activity; 

both were estimated using the Global Physical Activity Questionnaire, which was included in 

the PASTA questionnaires (Bull and others 2009). Lifestyle/disease proxies (self-rated health; 

sedentary time) were included as health covariates. All of the covariates were self-reported. 

Most of the covariates were reported at both t0 and t1, except for the covariates that were 

considered time-invariant (sex, education level). Physical activity was reported at t0, and 

multiple times between t0 and t1, but not at t1; therefore, the average physical activity 

between t0 and t1 was used as proxy for physical activity at t1. In the longitudinal analysis, the 

number of days between t0 and t1 was included as a covariate (Braun and others 2016). 

 

Statistical analysis 

Bivariate analyses were performed to assess the association between BMI, the exposure 

variables, and the potential covariates. Only covariates with p-value<0.1 (in either the cross-

sectional or the longitudinal models, or in both) were included in the linear mixed-effects 

models. Two different approaches were followed. First, a cross-sectional analysis was 

performed to identify differences in BMI between the different transport mode users at t0. 

Second, a longitudinal analysis was performed to assess the change in BMI that results from a 

change in travel behavior between t0 and t1. For both approaches, the cross-sectional and the 
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longitudinal analysis, we used linear mixed-effects models with city as a random effect. Three 

regression models were fitted: (0) unadjusted; (1) adjusted for socio-demographic covariates: 

sex, age, education level; and (2) adjusted for all covariates from model 1 and additionally 

other covariates of interest (as identified by the literature): self-rated health, occupational 

physical activity, leisure-time physical activity, and sedentary time. In the longitudinal models, 

sex, age at baseline, baseline education level, baseline BMI, and city were hypothesized time-

invariant covariates; and change in self-rated health, change in lifestyle, change in 

occupational and leisure-time physical activity, change in sedentary time, and time between t0 

and t1 were hypothesized time-varying covariates between baseline and follow up. 

Interaction by sex was investigated with Wald tests. There was no statistically significant 

interaction of sex in the fully-adjusted models, but for some modes near-significant 

interactions were observed, so we decided to test all models’ sensitivity to different sexes. We 

also tested the models’ sensitivity to a number of other factors: age, being overweight, 

participants that moved houses during follow-up (Braun and others 2016; Mytton and others 

2016), participants with a life changing event (moved house, new job or new job location, birth 

or adoption of a child in the household, stopped working, married, child / someone has left the 

household) (Allender and others 2008), time between t0 and t1, and city (Table S3). Potential 

mediation by transport-related physical activity between transport mode and BMI was also 

assessed (VanderWeele 2016). Only observations without missing data were included. R 

statistical software v3.3.2 was used for all analyses. A directed acyclic graph presenting the 

hypothesized causal structure is included in the supplemental material (Figure S1). 
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Results 

The final sample was well balanced between male and female, and between the seven cities. 

Participants were generally reporting to be in good health, and aged between 16 and 91. 

Walking, public transport and bikes were the most frequent transport modes among our 

participants (Table 1). Transport mode usage was similar between sexes, with a slightly higher 

prevalence of male cyclists and female public transport users. Non-respondents to the final 

questionnaire (at t1) were statistically different from the sample responding to both 

questionnaires; however, there was no difference in BMI, sex, transport-related and leisure-

time physical activity level, and transport mode usage of e-bike, motorcycle, and walk. Both 

questionnaires (t0 and t1) were completed 492 ± 202 days apart. 

At t1, participants reported less frequent use of the bike (-1.25 days/month) and of walking (-

1.70 days/month), and they increased car use (+0.62 days/month) compared to t0. The 

prevalence of switching between cycling categories was 22%: 369 participants reported less 

cycling and 152 reported more cycling, 1795 participants did not change their cycling 

behaviour (Table S4). 

 

Table 1: Characteristics of outcome, exposure and other covariates 

  

Respondents for cross-
sectional analysis at t0 
(n=7380) 

Respondents for 
longitudinal analysis at t0 
(n=2316) 

Sign 
different at 
t0? 

Respondents for 
longitudinal analysis at t1 
(n=2316) 

BMI [kg/m²]     
All 23.87 (3.92) 23.87 (3.85) No 23.90 (3.82) 
Male 24.62 (3.61) 24.55 (3.53) No 24.54 (3.54) 
Female 23.19 (4.06) 23.22 (4.02) No 23.30 (3.97) 

Height [m]     
All 1.72 (0.09) 1.72 (0.09) No 1.72 (0.09) 
Male 1.79 (0.07) 1.78 (0.07) No 1.79 (0.07) 
Female 1.67 (0.07) 1.67 (0.07) No 1.67 (0.07) 

Weight [kg]     
All 71.09 (14.06) 71.12 (13.71) No 71.30 (13.63) 
Male 78.57 (12.30) 78.17 (11.92) No 78.26 (12.00) 
Female 64.33 (11.97) 64.50 (11.85) No 64.76 (11.70) 

Age 39.50 (12.53) 40.66 (12.16) *** 42.00 (12.15) 
Sex   No  

Male 3503 (47%) 1122 (48%)  NA 
Female 3877 (53%) 1194 (52%)  NA 

Transport mode usage (days per month)     
Car 6.44 (7.70) 5.73 (7.03) *** 6.35 (7.23) 
Bike 10.90 (10.73) 11.69 (10.82) ** 10.44 (10.67) 
E-bike 0.62 (3.46) 0.69 (3.68) No 0.96 (4.28) 
Motorcycle / moped 1.28 (4.85) 1.12 (4.53) No 1.12 (4.48) 
Public transport 11.94 (10.20) 12.39 (10.17) . 11.73 (9.92) 
Walk 19.27 (8.26) 19.48 (8.06) No 17.78 (8.67) 

Cycling category   *  
Non-cyclist 1663 (23%) 476 (21%)  606 (26%) 
Occasional cyclist 1680 (23%) 500 (22%)  478 (21%) 
Frequent cyclist 4037 (55%) 1340 (58%)  1234 (53%) 

City   ***  
Antwerp 1147 (16%) 389 (17%)  NA 
Barcelona 1247 (17%) 430 (19%)  NA 
London 865 (12%) 263 (11%)  NA 
Oerebro 759 (10%) 143 (6%)  NA 
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Rome 1328 (18%) 305 (13%)  NA 
Vienna 1023 (14%) 422 (18%)  NA 
Zurich 1011 (14%) 364 (16%)  NA 

Self-rated health   ***  
Excellent 708 (10%) 249 (11%)  254 (11%) 
Very good 2814 (38%) 950 (41%)  1003 (43%) 
Good 2928 (40%) 895 (39%)  843 (36%) 
Fair 826 (11%) 202 (9%)  196 (8%) 
Poor 104 (1%) 20 (1%)  20 (1%) 

Education level   **  
No degree 20 (0%) 3 (0%)  NA 
Primary education 90 (1%) 22 (1%)  NA 
Secondary education / Further education 1897 (26%) 527 (23%)  NA 
Higher education / University education 5373 (73%) 1764 (76%)  NA 

GPAQ: occupational PA (metminutes) 870.32 (2529.19) 776.13 (2310.25) . 656.53 (1624.47)† 
GPAQ: transport PA (metminutes) 1568.51 (1951.12) 1524.73 (1637.64) No 1485.51 (1174.94)† 
GPAQ: leisure time PA (metminutes) 1606.02 (2303.97) 1566.61 (2126.75) No 1196.55 (1228.64)† 
GPAQ: sedentary time (minutes) 466.05 (194.88) 489.52 (192.86) *** 480.38 (209.02)† 

Data are mean (SD) or n (%). BMI: body mass index; GPAQ: global physical activity questionnaire; PA: physical activity. 
Statistical significance:  0 *** 0.001 ** 0.01 * 0.05 . 0.1 
†Average value from prospective analysis between t0 and t1. 

 

 

Cross-sectional analysis 

Across all models, statistically significant associations between BMI and transport mode usage 

were observed for several transport modes (Table 2). In the fully-adjusted model, BMI was 

0.027 kg/m² (95%CI 0.015 to 0.040) higher per additional day of car use per month. For an 

average individual in the sample (height: 1.72 m) an additional day of car driving per week 

translates into a weight difference of 0.32 kg. Significant associations were found for car 

(increases BMI), bike (decreases BMI), and motorcycle (increases BMI), and a near-significant 

association (0.05 < p < 0.10) was found for e-bike (increases BMI). No statistically significant 

associations were found for public transport use (p = 0.17) or walking (p = 0.46). Adjusting for 

age and sex changed the estimates in the partly and the fully adjusted models (model 1 and 

model 2) compared to the unadjusted model (model 0); the addition of self-rated health in the 

fully adjusted model (model 2) lowered the estimate for bike compared to the partly adjusted 

model (model 1). The results suggest a graded relation in terms of BMI: bike < walk < public 

transport < motorcycle or moped < e-bike < car. Self-reported physical activity from transport 

(walking, cycling, e-biking) was not found to be a mediator in the association between 

transport mode usage and BMI (Figure S2). A series of sensitivity analyses confirmed our 

results (Figure 1): differences between male and female were small, excluding participants 

older than 60 did not change our conclusions; and when only considering people with a 

healthy BMI (below 25 kg/m²) the effects were smaller but largely in the same direction. 

In frequent cyclists (defined as cycling for transport at least once per week) BMI was 0.375 

(95%CI -0.597 to -0.153) points lower compared to a non-cyclist; and being an occasional 
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cyclist (defined as cycling for transport less than once per week) was not associated with BMI 

(Table 2, Figure 1). 

 

Longitudinal analysis 

No statistically significant associations between change in BMI and change in transport mode 

usage were found in the fully-adjusted models (Table 2). However, results from unadjusted, 

partly adjusted and fully adjusted models (models 0-2) suggest that BMI decreases somewhat 

when cycling frequency increases (-0.004, 95%CI -0.011 to 0.003), and BMI increases when car 

usage increases (0.005, 95%CI -0.005 to 0.015). In addition the results suggest that public 

transport use decreases BMI (-0.005, 95%CI -0.012 to 0.002), which confirms previous work 

that showed public transport use is often combined with active mobility. Excluding participants 

with less than 1 year between t0 and t1 resulted in a slightly larger change in BMI (Figure 1). 

Due to the less frequent use of motorcycle and e-bike compared to other modes, confidence 

intervals were wider and mostly not statistically significant. 

Statistically significant reductions in BMI were seen in the fully-adjusted model in both 

frequent cyclists who maintained cycling (-0.181, 95%CI -0.322 to -0.040) and occasional/non-

cyclists who increased cycling (-0.303, 95%CI -0.530 to -0.077) (Table 2). A frequent cyclist who 

stopped cycling significantly increased their BMI (0.417, 95%CI 0.033 to 0.802) (Table S9, 

Figure S3). Taking up at least some cycling reduced BMI (-0.414, 95%CI -0.760 to -0.068) (Table 

S9, Figure S3). Findings were robust after performing several sensitivity analyses (Figure 1). 

 

City was included as a random effect in all models: an analysis by city gave mainly non-

significant results because of the smaller sample sizes and wider confidence intervals; a post 

hoc meta-analysis gave similar estimates as the original mixed models (Figure S4).  
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Table 2: Results from the linear mixed-effects models (cross-sectional and longitudinal 

analysis). Full models are presented in the supplemental material. 

 Model 0: unadjusted Model 1: partly adjusted † Model 2: fully adjusted # 

 Coefficient (95% CI) p-value Coefficient (95% CI) p-value Coefficient (95% CI) p-value 

Cross-sectional analyses (n=7380) 

†Model 1 adjusted for sex, age, education level, city as random effect 
#Model 2 adjusted for sex, age, education level, self-rated health, occupational physical activity, leisure-time physical activity, sedentary time, city as random 
effect 

(a) Association between BMI (kg/m²) and transport mode usage (difference in BMI per additional day per month) (Full model in Table S5) 
Bike -0.020 (-0.030 to -0.010) < 0.0001 -0.025 (-0.035 to -0.015) < 0.0001 -0.010 (-0.020 to -0.0002) 0.046 
Car 0.041 (0.029 to 0.054) < 0.0001 0.025 (0.012 to 0.038) < 0.0001 0.027 (0.015 to 0.040) < 0.0001 
E-bike 0.036 (0.010 to 0.062) 0.007 0.023 (-0.002 to 0.048) 0.072 0.021 (-0.003 to 0.045) 0.086 
Motorcycle / moped -0.001 (-0.020 to 0.018) 0.914 0.013 (-0.006 to 0.033) 0.168 0.019 (0.0001 to 0.037) 0.049 
Public transport -0.015 (-0.026 to -0.004) 0.008 0.009 (-0.002 to 0.020) 0.094 0.007 (-0.003 to 0.018) 0.173 
Walk -0.003 (-0.015 to 0.008) 0.560 -0.008 (-0.019 to 0.004) 0.187 -0.004 (-0.015 to 0.007) 0.455 

(b) Association between BMI (kg/m²) and cycling frequency (Full model in Table S6) 
Non-cyclist 0 -- 0 -- 0 -- 
Occasional cyclist -0.156 (-0.422 to 0.109) 0.248 -0.164 (-0.419 to 0.092) 0.209 0.030 (-0.216 to 0.277) 0.811 
Frequent cyclist -0.492 (-0.715 to -0.268) < 0.0001 -0.779 (-1.007 to -0.552) < 0.0001 -0.375 (-0.597 to -0.153) 0.0009 

Longitudinal analyses (n=2316) 

†Model 1 adjusted for sex, age at baseline, baseline education level, baseline BMI, city as random effect  
#Model 2 adjusted for sex, age at baseline, baseline education level, baseline BMI, change in self-rated health, change in lifestyle, change in occupational 
physical activity, change in leisure-time physical activity, change in sedentary time, time between t0 and t1, city as random effect 

(c) Association between change in BMI (kg/m²) and change in transport mode usage (change in BMI per additional day per month) (Full model in Table S7) 
Bike -0.005 (-0.012 to 0.002) 0.203 -0.005 (-0.012 to 0.002) 0.162 -0.004 (-0.011 to 0.003) 0.300 
Car 0.009 (-0.001 to 0.019) 0.072 0.008 (-0.002 to 0.018) 0.123 0.005 (-0.005 to 0.015) 0.318 
E-bike 0.014 (-0.001 to 0.029) 0.075 0.014 (-0.001 to 0.028) 0.074 0.013 (-0.001 to 0.028) 0.077 
Motorcycle / moped -0.003 (-0.019 to 0.013) 0.751 -0.001 (-0.017 to 0.015) 0.928 -0.001 (-0.017 to 0.015) 0.911 
Public transport -0.005 (-0.012 to 0.003) 0.243 -0.003 (-0.011 to 0.004) 0.388 -0.005 (-0.012 to 0.002) 0.191 
Walk -0.003 (-0.009 to 0.003) 0.294 -0.002 (-0.008 to 0.004) 0.465 -0.001 (-0.007 to 0.005) 0.776 

(d) Association between change in BMI (kg/m²) and change in cycling frequency (Full model in Table S8) 
Stable: Never 0 -- 0 -- 0 -- 
Less cycling 0.043 (-0.131 to 0.218) 0.627 0.034 (-0.138 to 0.206) 0.698 0.010 (-0.160 to 0.180) 0.906 
More cycling -0.247 (-0.478 to -0.017) 0.035 -0.279 (-0.507 to -0.051) 0.016 -0.303 (-0.530 to -0.077) 0.009 
Stable: Frequent -0.136 (-0.277 to 0.006) 0.060 -0.161 (-0.303 to -0.019) 0.026 -0.181 (-0.322 to -0.040) 0.012 
Stable: Occasional -0.116 (-0.307 to 0.076) 0.236 -0.099 (-0.288 to 0.089) 0.302 -0.085 (-0.272 to 0.101) 0.371 
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Figure 1: Effect sizes from the fully adjusted cross-sectional (a, b) and longitudinal (c, d) 

models and sensitivity analyses. Panels a and c use transport mode usage as exposure 

variable; in panels b and d cycling frequency is used as exposure variable. The dots indicate 

differences (a, b) or changes (c, d) in BMI and the error bars indicate 95% CIs. 
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Discussion 

In this large multicentre study, we found associations between transport mode choice and 

BMI. We showed that cycling is associated with lower BMI, and car use with higher BMI. When 

participants stopped or reduced frequency of cycling, their BMI increased, and when they 

increased/took up cycling, it decreased. Our analyses further suggested a graded relationship 

with the lowest BMI in cyclists, followed by walking, public transport, motorcycle or moped, e-

bike, and the highest BMI for car users. In both the cross-sectional (comparison between 

modes) and the longitudinal (change over time within an individual) analysis we found these 

associations. However, the effect sizes were smaller in the longitudinal analysis hinting at the 

presence of reverse causality, or hampered by the limited time between baseline and final 

assessment. A number of sensitivity analyses confirmed our main results. 

 

The cross-sectional analysis showed that a person cycling daily has a BMI of 1.11 kg/m² lower 

than someone who drove a car daily. According to Joshi et al. (2017) this difference in BMI 

would correspond to a lower life expectancy for car drivers of almost 8 months. For an average 

individual in our sample a difference in BMI of 1.11 kg/m² accounted to a weight difference of 

3.5 kg for men and 3.1 kg for women (Figure S5). In a cross-sectional study by Flint and 

Cummins (Flint and Cummins 2016) in older adults this was 5 and 4.4 kg respectively. In an 

Australian study, older men and women who consistently walked or cycled for 6 years 

continuously had a lower BMI (range: -2.15 up to -3.20 kg/m²) compared to users of private 

motor vehicles (Turrell and others 2017). Our longitudinal analysis showed smaller, but still 

mostly statistically significant effects: men weighed about 0.75 kg less after the follow-up 

period compared to the start of the study period when switching from car driving on 30 days 

per month to cycling on 30 days per month; for women this was less. A comparable result was 

found in a longitudinal study in the UK where a weight loss of 1 kg was observed for men 

switching from car to active or public modes, for women this was 0.8 kg (Flint and others 

2016); another UK study found for the same switch a decrease in BMI of 0.32 kg/m² which was 

similar to our study (Martin and others 2015). In a longitudinal study over 8 years in China, 

men gained 1.8 kg when acquiring a car (Bell and others 2002). Likewise, giving up one’s car 

lead to a 3 kg reduction in body weight after 6 years in US adults (Smart 2018). The mediation 

analysis in the cross-sectional models indicated that lower BMI in cyclists was unlikely to be 

entirely caused by increased transport-related physical activity. Self-selection or lifestyle, or 

other residual confounding from dietary energy intake might explain the remaining difference. 

Individuals that dropped out of the study were not systematically different in the outcome 
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variable (BMI) from participants in both waves of the survey and therefore could not explain 

the difference in results.  

BMI increases with age, at rates of approximately 0.06 to 0.20 kg/m² per year (Kim and others 

2017). In our study, the average follow-up period lasted for 492 days, resulting in a BMI 

increase of 0.109 kg/m² (transport mode usage model) or 0.139 kg/m³ (cycling frequency 

model). This was in the same order of magnitude as someone who continued to cycle 

occasionally (-0.085 kg/m²) meaning that these individuals did not lower BMI, but they kept 

their BMI stable, contrary to the general population that increased BMI over the follow-up 

period. Taking up cycling thus prevents it getting worse in those that are already overweight or 

obese, and it prevents those who are normal weight from becoming overweight or obese. This 

leads to lower risks for a number of chronic diseases, including diabetes, cardiovascular 

diseases and cancer. The rise in the use of active transport modes may therefore counteract 

the increasing prevalence of overweight and obesity and the related health impact in cities in 

both high- and low-income countries. 

 

We mainly focussed on the extreme mode switch from car to bike, but also for some other 

modes near-significant effects were found. Although the sample of e-bikers was small, riding 

an e-bike was associated with higher BMI. This finding could complement a previous study that 

found that older adults with a higher BMI were more likely to be an e-bike-user (Van 

Cauwenberg and others in press). This would indicate the presence of self-selection. In the 

longitudinal analysis, we hypothesize that more frequent use of an e-bike leads to a higher BMI 

through less regular biking. However, it is unlikely that all of the weight gain was the result of 

reduced physical activity, as e-biking still requires moderate to vigorous levels of physical 

activity (Berntsen and others 2017; Langford and others 2017). Using public transport resulted 

in a lower BMI than private motorized transport; this confirmed most previous studies who 

found lower risks of being overweight in public transport users (Liao and others 2016; 

MacDonald and others 2010; Smart 2018). Pedestrians and cyclists were split in our analyses in 

contrast to some previous studies (Flint and others 2014; Liao and others 2016; Martin and 

others 2015). Cycling requires more energy per minute than walking and it was previously 

found that cycling commuters were overall more physically active compared to pedestrians 

(Celis-Morales and others 2017b; Turrell and others 2017). This was reflected in our findings 

when considering BMI: pedestrians had a higher BMI compared to cyclists, but a lower BMI 

compared to car drivers, consistent with the literature (Flint and Cummins 2016; Mytton and 

others 2016). We included all walking trips, and not just walking as the main mode of transport 

or as the main commute mode; because walking trips were often short in length, this may 
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have pushed our estimates to the null. For instance, Frank and colleagues (Frank and others 

2004) found that each additional kilometre walked per day was associated with a 4.8% 

reduction in the risk of obesity. The overall reduction in active mobility at t1 compared to t0 

might be caused by the timing of the final questionnaire, which was administered during the 

European wintertime, or by other secular factors like changes in the built environment or local 

transport policies (Goodman and others 2014; Panter and others 2016). 

 

A limitation of our study was the self-reported height and weight: Height usually gets 

overestimated while weight gets underestimated; as a result, BMI gets underestimated by 

around 0 to 1 points (Gorber and others 2007). Heavier people tend to underestimate more 

(Gorber and others 2007). The difference between true BMI and reported BMI increases at 

older ages (Kuczmarski and others 2001). In our study, car drivers were heavier, and as heavier 

people tend to underestimate their weight, a possible bias would have underestimated the 

effect. Moreover, a validation sub-study found that self-reported weights were well correlated 

to directly measured weights, and that the difference between both was non-differential 

between transport modes. Recall bias might also have affected the transport mode usage and 

physical activity reporting. We had no information on dietary energy intake, which could lead 

to residual confounding; however in a previous study from Flint and Cummins (2016), diet did 

not impact the BMI to active mobility relationship. Other studies also found that extra physical 

activity was not compensated for by additional food intake (Donnelly and others 2014; 

Schubert and others 2013). Therefore, we hypothesized that diet was not associated to the 

exposure and was not an effect of the exposure, leading to no or only limited residual 

confounding in our study. 

The sample is representative of the general population for sex, but is not representative in for 

instance education, ethnicity, or BMI, which may indicate healthy volunteer selection bias 

(Table S1). Only in Oerebro an effort was made for random sampling, whereas in other cities 

an opportunistic recruitment strategy was followed (Dons and others 2015). Since cyclists were 

oversampled on purpose, the prevalence of cycling is not representative for the general 

population; nevertheless, our estimates should be generally valid. 

Outcome and exposure variables were reported at two time points – because of this design we 

could not differentiate between shorter-term effects and effects that are more persistent. 

Periodic effects could not be excluded, for which we tried to address by including relevant 

time-varying covariates like physical activity level and self-rated health. Unfortunately in our 

observational study the change in transport mode usage was not exogenous because people 

self-selected themselves to change their transport mode (van de Coevering and others 2015). 
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The multicentre approach in different countries with different obesity prevalence, physical 

activity levels, and active mobility use, added value to the analysis. A longitudinal and 

multicentre study design is generally considered more complex, expensive, and time 

consuming, but our analysis clearly provided additional insights also on causal inferences 

compared to the cross-sectional analysis only (van de Coevering and others 2015). We 

accounted for a number of influencing factors that were often not available in previous 

studies, like leisure-time and occupational physical activity, or health status. 

 

In conclusion, we found statistically significant associations between transport mode choice 

and BMI. Cyclists weighed less than their non-active peers; and people that start or increase 

cycling will most likely lose weight and vice versa. Promoting active mobility may therefore 

provide an opportunity to fight the overweight and obesity epidemic, contributing in turn to 

reduce the very high burden of non-communicable diseases. 
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