106 research outputs found

    Cellulose hydrolysis-hydrogenolysis to ethyleneglycol and propyleneglycol over Ru and heteropolyacid catalysts

    Get PDF
    Еthylene and propylene glycols (EG and PG) are widely used in industry to produce cooling systems and other valuable chemical products. But PG is non-toxic, therefore it is used in industries where EG can not be used: pharmaceutical, food, etc. This polyols produced by "one-pot" method, which is one of the promising and effective methods for producing alcohols from cellulose under harsh conditions. The purpose of this study was to determine the optimal composition of the solid bifunctional catalyst and the conditions of its preparation for the hydrolysis-hydrogenolysis of cellulose. Catalists are Ru-HPA/ZrO[2], RuHPA/Nb[2]O[5] and Ru/CsHPK. As a result of the study, the most promising catalyst system is 1%Ru/Cs[3.5]H[0.5]SiW[12]O[40]. In the presence of 1%Ru/CsHPA, the yield of 25% EG and 11% PG was detected (EG and PG selectivity is 60 and 27%). The activity of the catalysts was studied in the presence of Ca(OH)[2]

    Serum after Autologous Transplantation Stimulates Proliferation and Expansion of Human Hematopoietic Progenitor Cells

    Get PDF
    Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT) significantly enhanced proliferation, maintained primitive immunophenotype (CD34+, CD133+, CD45−) for more cell divisions and increased colony forming units (CFU) as well as the number of cobblestone area-forming cells (CAFC). The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT). Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1) increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms

    Get PDF
    Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1 that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF
    corecore