33 research outputs found

    A mouse model for the Sézary syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Sézary syndrome is an aggressive leukemic form of cutaneous T cell lymphoma and there is no cure of this disease. Until now there is no true animal model for Sézary syndrome, by which new drugs against the disease could be tested.</p> <p>Methods</p> <p>Immune deficient CB-17 SCID beige mice were injected subcutaneously with HUT78 cells, a cell line, derived from a Sézary syndrome patient. Developing tumors were analyzed by immunohistochemistry.</p> <p>Results</p> <p>Injected HUT78 cells formed tumors at the site of injection. In contrast to the Sézary syndrome in man, no malignant cells were observed in the blood of tumor bearing CB-17 SCID beige mice. The tumors appeared 44-62 days after injection and tumor bearing mice survived further 25 - 62 days until they had to be euthanized according to the guidelines of the Swiss animal protection law, since the tumors had reached the maximal allowed size.</p> <p>Conclusion</p> <p>Although the mouse model does not exactly match the human disease, it will be suited for tests of new substances for the treatment of the Sézary syndrome. The formation of an isolated tumor on the skin has the advantage that the effect of a potential drug can be directly monitored without the use of invasive methods.</p

    Arsenic trioxide down-regulates antiapoptotic genes and induces cell death in mycosis fungoides tumors in a mouse model

    Get PDF
    Background: Mycosis fungoides (MF) is the most frequent cutaneous T-cell lymphoma (CTCL). Arsenic trioxide (As2O3) has recently been shown to be effective against leukemias, so we studied whether As2O3 induces apoptosis of CTCL cells in vitro. We further investigated if As2O3 is effective in a MF mouse model. Material and methods: Annexin V/7-amino-actinomycin-D stainings were carried out to investigate if As2O3 induced apoptosis of CTCL cell lines. To study the underlying mechanisms, the effects of As2O3 on various transcription factors and apoptosis regulating proteins were analyzed by western blots, electrophoretic mobility shift assays and transcription factor enzyme-linked immunosorbent assays. The ability of As2O3 to induce tumor regression was investigated in a MF mouse model. Results: As2O3-induced apoptosis was paralleled by a reduction of the DNA-binding activities of transcription factors of the NFkB and signal transducer and activator of transcription gene families and reduced expression of the antiapoptotic proteins bcl-1, bcl-xL and mcl-1. Local injections of 200 μM As2O3 into tumors caused complete remissions in five of six mice and one partial remission. Conclusions: As2O3 induced apoptosis of CTCL cells by the down-regulation of transcription factors that stimulate the expression of antiapoptotic genes. Local injection of As2O3 into MF tumor-bearing mice resulted in tumor regressio

    RNA isolation for transcriptomics of human and mouse small skin biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isolation of RNA from skin biopsies presents a challenge, due to the tough nature of skin tissue and a high presence of RNases. As we lacked the dedicated equipment, i.e. homogenizer or bead-beater, needed for the available RNA from skin isolation methods, we adapted and tested our zebrafish single-embryo RNA-isolation protocol for RNA isolation from skin punch biopsies.</p> <p>Findings</p> <p>We tested our new RNA-isolation protocol in two experiments: a large-scale study with 97 human skin samples, and a small study with 16 mouse skin samples. Human skin was sampled with 4.0 mm biopsy punches and for the mouse skin different punch diameter sizes were tested; 1.0, 1.5, 2.0, and 2.5 mm. The average RNA yield in human samples was 1.5 μg with an average RNA quality RIN value of 8.1. For the mouse biopsies, the average RNA yield was 2.4 μg with an average RIN value of 7.5. For 96% of the human biopsies and 100% of the mouse biopsies we obtained enough high-quality RNA. The RNA samples were successfully tested in a transcriptomics analysis using the Affymetrix and Roche NimbleGen platforms.</p> <p>Conclusions</p> <p>Using our new RNA-isolation protocol, we were able to consistently isolate high-quality RNA, which is apt for further transcriptomics analysis. Furthermore, this method is already useable on biopsy material obtained with a punch diameter as small as 1.5 mm.</p

    A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

    Get PDF
    We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.Comment: 6 pages, Latex, 3 figures as uuencoded compressed tar file included at the end, in case of problems contact [email protected] (Antje Bruell

    Transcription factor profiling shows new ways towards new treatment options of cutaneous T cell lymphomas

    Full text link
    Most oncogenes encode activators of transcription factors or transcription factors themselves. Transcription factors that are induced by growth stimuli are, in contrast to transcription factors that regulate house keeping genes, tightly regulated and only active, when a stimulus (e.g. cytokines or other growth factors) is given. Examples of such transcription factors are members of the jun, fos, myc, NFkB and STAT gene families. In cancer cells this regulation is interrupted, resulting in constitutive activities of transcription factors that are normally silent. This in turn results in the increased expression of target genes that are necessary for growth and protection from apoptosis. Since inducible transcription factors are activated by specific pathways, the identification of unusual constitutively active transcription factors also identifies the involved signal transduction pathway. Inhibitors of the components of these pathways may be effective anti-cancer agents, as they interrupt the abnormal signalling and in cancer cells. We applied this strategy for two forms of cutaneous T cell lymphomas and identified several groups of agents that may be the prototypes of new drugs to fight these diseases

    Transcription factor profiling unveils the oncogenes involved in the pathogenesis of cutaneous T cell lymphomas

    Get PDF
    The finding in colon carcinoma that cancerogenesis is a sequence of activation of different oncogenes and inactivation of tumor suppressor genes has increased the efforts to identify the genes that areresponsible for the progression of different kinds of cancer. Many activated oncogenes and inactivated tumor suppressor genes have been detected in cancer cells during the last decades, but for most cancers no network or sequence of oncogenes could be identified that could explain the progression of the disease and allow a molecular staging of the disease. Several strategies have been tried to find the genes that make cancer cells different from their normal counterparts, however, mostly only with little success. In this review article it will be reported how the strategy of transcription factor profiling helped to identify the genes that are responsible for the progression of two kinds of cutaneous lymphomas: Mycosis fungoides and the Sézary syndrome. By this way we were able to identify several agents that may be the prototypes of new drugs to fight these diseases

    In vivo switching of human melanoma cells between proliferative and invasive states

    Full text link
    Metastatic melanoma represents a complex and heterogeneous disease for which there are no therapies to improve patient survival. Recent expression profiling of melanoma cell lines identified two transcription signatures, respectively, corresponding with proliferative and invasive cellular phenotypes. A model derived from these findings predicts that in vivo melanoma cells may switch between these states. Here, DNA microarray-characterized cell lines were subjected to in vitro characterization before s.c. injection into immunocompromised mice. Tumor growth rates were measured and postexcision samples were assessed by immunohistochemistry to identify invasive and proliferative signature cells. In vitro tests showed that proliferative signature melanoma cells are faster growing but less motile than invasive signature cells. In vivo proliferative signature cells initiated tumor growth in 14 +/- 3 days postinjection. By comparison, invasive signature cells required a significantly longer (P < 0.001) period of 59 +/- 11 days. Immunohistochemistry showed that regardless of the seed cell signature, tumors showed evidence for both proliferative and invasive cell types. Furthermore, proliferative signature cell types were detected most frequently in the peripheral margin of growing tumors. These data indicate that melanoma cells undergo transcriptional signature switching in vivo likely regulated by local microenvironmental conditions. Our findings challenge previous models of melanoma progression that evoke one-way changes in gene expression. We present a new model for melanoma progression that accounts for transcription signature plasticity and provides a more rational context for explaining observed melanoma biology
    corecore