159 research outputs found

    Physical activity in children with Juvenile Idiopathic Arthritis compared to controls

    Get PDF
    BACKGROUND: To compare physical activity (PA) in children with juvenile idiopathic arthritis (JIA) with controls and to analyse the effect of disease specific factors on PA in children with JIA treated according to current treatment regimes. METHODS: PA was measured with a 7-day activity diary and expressed as physical activity level (PAL). Moderate to vigorous physical activity (MVPA) (hours/day) and sedentary time (hours/day) was determined. In children with JIA, medication, the number of swollen and/or painful joints, disease activity, functional ability, pain and well-being was determined. Multivariate regression analysis was performed to analyze differences in PA between JIA and controls, adjusted for influences of age, gender, season, Body Mass Index (BMI) and to analyze predictors of PA in JIA patients. RESULTS: Seventy-six children with JIA (26 boys and 50 girls, mean ± SD age 10.0 ± 1.4 years) and 131 controls (49 boys and 82 girls, mean ± SD age 10.4 ± 1.2 years) participated in this study. Children with JIA had a significantly lower PAL (0.10, p = 0.01) corrected for age, BMI, gender and season. They spent less time in MVPA (0.41 h/day, p = 0.06) and had a significantly higher mean time spent in sedentary activities (0.59 h/day, p 0.02) compared to controls. The activity level of children with JIA was related to age, gender, season, feeling of well-being and pain. CONCLUSION: Children with JIA have a lower PAL, spent less time in MVPA and spent more time on sedentary activities compared to controls despite current medical treatment and PA encouragement. TRIAL REGISTRATION: Data of the children with JIA are from the Rheumates@work study ISRCTN92733069

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    Physical activity in children with Juvenile Idiopathic Arthritis compared to controls

    Get PDF
    Abstract Background: To compare physical activity (PA) in children with juvenile idiopathic arthritis (JIA) with controls and to analyse the effect of disease specific factors on PA in children with JIA treated according to current treatment regimes. Methods: PA was measured with a 7-day activity diary and expressed as physical activity level (PAL). Moderate to vigorous physical activity (MVPA) (hours/day) and sedentary time (hours/day) was determined. In children with JIA, medication, the number of swollen and/or painful joints, disease activity, functional ability, pain and well-being was determined. Multivariate regression analysis was performed to analyze differences in PA between JIA and controls, adjusted for influences of age, gender, season, Body Mass Index (BMI) and to analyze predictors of PA in JIA patients. Results: Seventy-six children with JIA (26 boys and 50 girls, mean ± SD age 10.0 ± 1.4 years) and 131 controls (49 boys and 82 girls, mean ± SD age 10.4 ± 1.2 years) participated in this study. Children with JIA had a significantly lower PAL (0.10, p = 0.01) corrected for age, BMI, gender and season. They spent less time in MVPA (0.41 h/day, p = 0.06) and had a significantly higher mean time spent in sedentary activities (0.59 h/day, p 0.02) compared to controls. The activity level of children with JIA was related to age, gender, season, feeling of well-being and pain

    Clinically relevant safety issues associated with St. John's wort product labels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>St. John's wort (SJW), used to treat depression, is popular in the USA, Canada, and parts of Europe. However, there are documented interactions between SJW and prescription medications including warfarin, cyclosporine, indinavir, and oral contraceptives. One source of information about these safety considerations is the product label. The aim of this study was to evaluate the clinically relevant safety information included on labeling in a nationally representative sample of SJW products from the USA.</p> <p>Methods</p> <p>Eight clinically relevant safety issues were identified: drug interactions (SJW-HIV medications, SJW-immunosupressants, SJW-oral contraceptives, and SJW-warfarin), contraindications (bipolar disorder), therapeutic duplication (antidepressants), and general considerations (phototoxicity and advice to consult a healthcare professional (HCP)). A list of SJW products was identified to assess their labels. Percentages and totals were used to present findings.</p> <p>Results</p> <p>Of the seventy-four products evaluated, no product label provided information for all 8 evaluation criteria. Three products (4.1%) provided information on 7 of the 8 criteria. Four products provided no safety information whatsoever. Percentage of products with label information was: SJW-HIV (8.1%), SJW-immunosupressants (5.4%), SJW-OCPs (8.1%), SJW-warfarin (5.4%), bipolar (1.4%), antidepressants (23.0%), phototoxicity (51.4%), and consult HCP (87.8%). Other safety-related information on labels included warnings about pregnancy (74.3%), lactation (64.9%), discontinue if adverse reaction (23.0%), and not for use in patients under 18 years old (13.5%). The average number of <it>a priori </it>safety issues included on a product label was 1.91 (range 0–8) for 23.9% completeness.</p> <p>Conclusion</p> <p>The vast majority of SJW products fail to adequately address clinically relevant safety issues on their labeling. A few products do provide an acceptable amount of information on clinically relevant safety issues which could enhance the quality of counseling by HCPs and health store clerks. HCPs and consumers may benefit if the FDA re-examined labeling requirements for dietary supplements.</p

    A Gene in the Process of Endosymbiotic Transfer

    Get PDF
    BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont

    Pregnane X Receptor and Yin Yang 1 Contribute to the Differential Tissue Expression and Induction of CYP3A5 and CYP3A4

    Get PDF
    The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4

    Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    Get PDF
    © 2016 International Society for Microbial Ecology All rights reserved. Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1
    • …
    corecore