5,114 research outputs found

    Do People Make Strategic Moves? Experimental Evidence on Strategic Information Avoidance

    Get PDF
    The strategic commitment moves that game theory predicts players make may sometimes seem counter-intuitive. We therefore conducted an experiment to see if people make the predicted strategic move. The experiment uses a simple bargaining situation. A player can make a strategic move of committing to not seeing what another player will demand. Our data show that subjects do, but only after substantial time, learn to make the predicted strategic move. We find only weak evidence of physical timing effects.strategic moves; commitment; bargaining; strategic value of information; physical timing effects; endogenous timing; experiment

    Gamma-rays from dark matter annihilations strongly constrain the substructure in halos

    Full text link
    Recently, it has been shown that electrons and positrons from dark matter (DM) annihilations provide an excellent fit to the Fermi, PAMELA, and HESS data. Using this DM model, which requires an enhancement of the annihilation cross section over its standard value to match the observations, we show that it immediately implies an observable level of gamma-ray emission for the Fermi telescope from nearby galaxy clusters such as Virgo and Fornax. We show that this DM model implies a peculiar feature from final state radiation that is a distinctive signature of DM. Using the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures within DM halos to be > 5x10^-3 M_sun -- about four orders of magnitudes larger than the expectation for cold dark matter. This limits the cutoff scale in the linear matter power spectrum to k < 35/kpc which can be explained by e.g., warm dark matter. Very near future Fermi observations will strongly constrain the minimum mass to be > 10^3 M_sun: if the true substructure cutoff is much smaller than this, the DM interpretation of the Fermi/PAMELA/HESS data must be wrong. To address the problem of astrophysical foregrounds, we performed high-resolution, cosmological simulations of galaxy clusters that include realistic cosmic ray (CR) physics. We compute the dominating gamma-ray emission signal resulting from hadronic CR interactions and find that it follows a universal spectrum and spatial distribution. If we neglect the anomalous enhancement factor and assume standard values for the cross section and minimum subhalo mass, the same model of DM predicts comparable levels of the gamma-ray emission from DM annihilations and CR interactions. This suggests that spectral subtraction techniques could be applied to detect the annihilation signal.Comment: 5 pages, 2 figures (published version; minor corrections to figures and result, equation added

    Radiation-induced interface phenomena: Decoration of high-energy density ion tracks

    Get PDF
    The effect of 20 MeV Cl4 + ions incident on Au-SiO2 and Ag-SiO2 interfaces was investigated using high-resolution transmission electron microscopy. Cross-sectional micrographs expose beam-induced gold interfacial transport and migration into the SiO2. No such migration was observed for silver films. The relevance of this phenomenon to the adhesion improvement found at corresponding irradiation doses is discussed

    Novel decay dynamics revealed for virus-mediated drug activation in cytomegalovirus infection

    Get PDF
    Human cytomegalovirus (CMV) infection is a substantial cause of morbidity and mortality in immunocompromised hosts and globally is one of the most important congenital infections. The nucleoside analogue ganciclovir (GCV), which requires initial phosphorylation by the viral UL97 kinase, is the mainstay for treatment. To date, CMV decay kinetics during GCV therapy have not been extensively investigated and its clinical implications not fully appreciated. We measured CMV DNA levels in the blood of 92 solid organ transplant recipients with CMV disease over the initial 21 days of ganciclovir therapy and identified four distinct decay patterns, including a new pattern exhibiting a transient viral rebound (Hump) following initial decline. Since current viral dynamics models were unable to account for this Hump profile, we developed a novel multi-level model, which includes the intracellular role of UL97 in the continued activation of ganciclovir, that successfully described all the decline patterns observed. Fitting the data allowed us to estimate ganciclovir effectiveness in vivo (mean 92%), infected cell half-life (mean 0.7 days), and other viral dynamics parameters that determine which of the four kinetic patterns will ensue. An important clinical implication of our results is that the virological efficacy of GCV operates over a broad dose range. The model also raises the possibility that GCV can drive replication to a new lower steady state but ultimately cannot fully eradicate it. This model is likely to be generalizable to other anti-CMV nucleoside analogs that require activation by viral enzymes such as UL97 or its homologues

    Remarks on certain composita of fields

    Full text link
    Let LL and MM be two algebraically closed fields contained in some common larger field. It is obvious that the intersection C=L∊MC=L\cap M is also algebraically closed. Although the compositum LMLM is obviously perfect, there is no reason why it should be algebraically closed except when one of the two fields is contained in the other. We prove that if the two fields are strictly larger that CC, and linearly disjoint over CC, then the compositum LMLM is not algebraically closed; in fact we shall prove that the Galois group of the maximal abelian extension of LMLM is the free pro-abelian group of rank ∣LM∣|LM|, and that the free pro-nilpotent group of rank ∣C∣|C| can be realized as a Galois group over LMLM. The above results may be considered as the main contribution of this article but we obtain some additional results on field composita that might be of independent interest

    Phase-matched second-harmonic generation in a ferroelectric liquid crystal waveguide

    Full text link
    True phase-matched second-harmonic generation in a waveguide of crosslinkable ferroelectric liquid crystals is demonstrated. These materials allow the formation of macroscopically polar structures whose order can be frozen by photopolymerization. Homeotropic alignment was chosen which offers decisive advantages compared to other geometries. All parameters contributing to the conversion efficiency are maximized by deliberately controlling the supramolecular arrangement. The system has the potential to achieve practical level of performances as a frequency doubler for low power laser diodes.Comment: 4 pages, LaTeX2e article, 3 figures, 4 EPS files, submitted to Physical Review Letter

    Spectral and Photometric Evolution of Young Stellar Populations: the Impact of Gaseous Emission at Various Metallicities

    Get PDF
    We include gaseous continuum and line emission into our GALEV models for the spectral and photometric evolution of Simple Stellar Populations (SSPs) for various metallicities in the range 0.02 <= Z/Zsun <= 2.5. This allows to extend them to significantly younger ages than before. They now cover the age range from 4 Myr all through 14 Gyr. We point out the very important contributions of gaseous emission to broad band fluxes and their strong metallicity dependence during very early evolutionary stages of star clusters, galaxies or subgalactic fragments with vigorous ongoing star formation. Emission-line contributions are commonly seen in these actively star-forming regions. Models without gaseous emission cannot explain their observed colors at all, or lead to wrong age estimates. We use up-to-date Lyman continuum emission rates and decided to use recent empirical determinations of emission line ratios relative to Hbeta for subsolar metallicities. We justify this approach for all situations where no or not enough spectral information is available to determine all the parameters required by photoionization models. The effects of gaseous line and continuum emission on broad band fluxes are shown for different metallicities and as a function of age. In addition to the many filter systems already included in our earlier models, we here also include the HST NICMOS and Advanced Camera for Surveys (= ACS) filter systems

    EEG source imaging assists decoding in a face recognition task

    Full text link
    EEG based brain state decoding has numerous applications. State of the art decoding is based on processing of the multivariate sensor space signal, however evidence is mounting that EEG source reconstruction can assist decoding. EEG source imaging leads to high-dimensional representations and rather strong a priori information must be invoked. Recent work by Edelman et al. (2016) has demonstrated that introduction of a spatially focal source space representation can improve decoding of motor imagery. In this work we explore the generality of Edelman et al. hypothesis by considering decoding of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source imaging does not lead to an improved decoding. We design a distributed pipeline in which the classifier has access to brain wide features which in turn does lead to a 15% reduction in the error rate using source space features. Hence, our work presents supporting evidence for the hypothesis that source imaging improves decoding
    • …
    corecore