31 research outputs found

    Novel Interleukin-10 Gene Polymorphism Is Linked to Gestational Diabetes in Taiwanese Population

    Get PDF
    Objective: The association of interleukin-10 (IL-10) polymorphism with diabetes and its complication was recently established, while there were few researches considering the potential role of IL-10 in gestational diabetes (GDM). This study aimed to investigate the association between IL-10 gene rs1800896 (−1082 A/G), rs1800871 (−819 T/C), rs1800872 (−592 A/C), and rs3021094 (3388 A/C) single nucleotide polymorphisms (SNPs) and GDM susceptibility.Methods: This study included 72 GDM patients and 100 healthy pregnant women. Direct sequencing of the products from polymerase chain reactions of the extracted genomic DNA from study subjects were conducted for analyzing IL-10 gene polymorphism and further genotype frequencies were compared. Plasma IL-10 concentration was measured by ELISA method.Results: The results revealed no significant difference in −592 A/C, −819 T/C, and −1082 A/G genotypes. Significantly increased prevalence of A allele (P = 0.028, OR = 1.69, 95% CI = 1.081–2.64) and A/A genotype (P = 0.031, OR = 2.881, 95% CI = 1.145–7.250) at a previously un-characterized rs3021094 SNP were discovered in the GDM group. Increased IL-10 levels and insulin resistance were also related to the genotype of rs3021094. The risk of GDM was increased when IL-10 level was over 6.5 pg/ml.Conclusion: Our study demonstrated that A allele and A/A genotype of rs3021094 SNP in IL-10 gene were linked to increased risk for GDM, IL-10 plasma level and insulin resistance, which could be potential targets for early screening and detection of GDM

    Molecular Identification of Canine Podocalyxin-Like Protein 1 as a Renal Tubulogenic Regulator

    No full text
    GP135 is an apical membrane protein expressed in polarized MDCK epithelial cells. When cultured in three-dimensional collagen gel, MDCK cells form branching tubules in response to hepatocyte growth factor stimulation in a manner that simulates the embryonic renal development. During this process, GP135 displays transient loss of membranous localization but reappears at the cell surface when nascent lumen emerges from the developing tubules. Despite being used for decades as the canonical hallmark of apical surface , the molecular identity and the significance of the dynamic expression of GP135 during the tubulogenic process remain elusive. For exploring the function of GP135, the full- length cDNA encoding GP135 was obtained. Sequence alignments and features analysis confirm GP135 as a canine homolog of podocalyxin, confirming the finding of an earlier independent study. Immunohistochemical assays on canine kidney sections identified both glomerular and tubular distribution of GP135 along the nephron. Mutant MDCK cells expressing siRNA targeted at two regions of GP135 show defects in hepatocyte growth factor–induced tubulogenesis. Re-expression of full-length and an O-linked glycosylation abbreviated construct of GP135 could recapitulate the tubulogenesis process lacking in siRNA knockdown cells; however, a deletion construct devoid of the cytoplasmic domain failed to rescue the phenotype. In summary, the data identify the MDCK apical domain marker GP135 as a tubular form of podocalyxin and provide evidence for its importance in renal tubulogenesis

    Rho Gtpase Activity Modulates Pseudomonas Aeruginosa Internalization by Epithelial Cells

    No full text
    The Gram-negative pathogen Pseudomonas aeruginosa invades epithelial cells in vivo and in vitro. We have examined the pathway(s) by which epithelial cells internalize P. aeruginosa strain PA103 using Madin-Darby canine kidney ( MDCK) cells. We have recently demonstrated that P. aeruginosa internalization occurs by an actin-dependent Toxin B-inhibited pathway which becomes downregulated as epithelial cells become polarized, suggesting that one or more of the Rho family GTPases is involved in bacterial internalization. Here, we demonstrate that activation of the Rho family GTPases by cytotoxic necrotizing factor 1 (CNF-1 ) stimulates P. aeruginosa internalization. Examination of the roles of the individual Rho family GTPases in internalization shows that expression of a constitutively active allele of RhoA (RhoAV14), but not of constitutively active Rad (Rac1V12) or Cdc42 (Cdc42V12), is sufficient to increase uptake of PA103pscJ, This relative increase persists when bacterial infection is established at the basolateral surface of polarized cells, suggesting that the effect of RhoAV14 is not simply due to its known ability to disrupt tight junction integrity in polarized cells. RhoAV14 -mediated stimulation of bacterial uptake is actin dependent as it is abrogated by exposure to latrunculin A. We also find that endogenous Rho GTP levels in epithelial cells are increased by infection with an internalized strain of P, aeruginosa; conversely, a poorly internalized isogenic strain expressing the bacterial anti-internalization protein ExoT causes decreased Rho GTP levels. Experimental inhibition of Rho, either by expressing dominant negative RhoAN19 or by inhibiting native Rho using a membrane permeable fusion construct of a Rho-specific inhibitor, C3 ADP- ribosyltransferase, does not inhibit PA103pscJ internalization in MDCK or HeLa cells. Models consistent with these data are presented

    Cdc42-Dependent Modulation of Tight Junctions and Membrane Protein Traffic in Polarized Madin-Darby Canine Kidney Cells

    No full text
    Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types . We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system . Here we report that expression of dominant-active Cdc42N12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42N12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity

    Rac1 Orientates Epithelial Apical Polarity through Effects on Basolateral Laminin Assembly

    No full text
    Cellular polarization involves the generation of asymmetry along an intracellular axis. In a multicellular tissue, the asymmetry of individual cells must conform to the overlying architecture of the tissue. However, the mechanisms that couple cellular polarization to tissue morphogenesis are poorly understood Here, we report that orientation of apical polarity in developing Madin-Darby canine kidney (MDCK) epithelial cysts requires the small GTPase Rac1 and the basement membrane component laminin. Dominant-negative Rac1 alters the supramolecular assembly of endogenous MDCK laminin and causes a striking inversion of apical polarity. Exogenous laminin is recruited to the surface of these cysts and rescues apical polarity. These findings implicate Racl- mediated laminin assembly in apical pole orientation. By linking apical orientation to generation of the basement membrane, epithelial cells ensure the coordination of polarity with tissue architecture

    The Gtpase Rac1 Selectively Regulates Salmonella Invasion at the Apical Plasma Membrane of Polarized Epithelial Cells

    No full text
    The bacterial pathogen Salmonella typhimurium colonizes its animal hosts by inducing its internalization into intestinal epithelial cells, This process requires reorganization of the actin cytoskeleton of the apical plasma membrane into elaborate membrane ruffles that engulf the bacteria, Members of the Rho family of small GTPases are critical regulators of actin structure, and in nonpolarized cells, the GTPase Cdc42 has been shown to modulate Salmonella entry. Because the actin architecture of epithelial cells is organized differently from that of nonpolarized cells, we examined the role of two Rho family GTPases, Cdc42 and Rad, in invasion of polarized monolayers of MDCK cells by S. typhimurium. Surprisingly., we found that endogenous Rad, but not Cdc42, was activated during bacterial entry at the apical pole, and that this activation required the bacterial effector protein SopE, Furthermore, expression of dominant inhibitory Rac1 but not Cdc42 significantly inhibited apical internalization of Salmonella, indicating that Rad activation is integral to the bacterial entry process. In contrast, during basolateral internalization, both Cdc42 and Rad were activated; however, neither GTPase was required for entry, These findings, which differ significantly from previous observations in nonpolarized cells, indicate that the host cell signaling pathways activated by bacterial pathogens may vary with cell type, and in epithelial tissues may further differ between plasma membrane domains

    Rac1 Protects Epithelial Cells against Anoikis

    No full text
    Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension . In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p 42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation
    corecore