18 research outputs found

    The Mother Centriole Plays an Instructive Role in Defining Cell Geometry

    Get PDF
    Centriole positioning is a key step in establishment and propagation of cell geometry, but the mechanism of this positioning is unknown. The ability of pre-existing centrioles to induce formation of new centrioles at a defined angle relative to themselves suggests they may have the capacity to transmit spatial information to their daughters. Using three-dimensional computer-aided analysis of cell morphology in Chlamydomonas, we identify six genes required for centriole positioning relative to overall cell polarity, four of which have known sequences. We show that the distal portion of the centriole is critical for positioning, and that the centriole positions the nucleus rather than vice versa. We obtain evidence that the daughter centriole is unable to respond to normal positioning cues and relies on the mother for positional information. Our results represent a clear example of ā€œcytotaxisā€ as defined by Sonneborn, and suggest that centrioles can play a key function in propagation of cellular geometry from one generation to the next. The genes documented here that are required for proper centriole positioning may represent a new class of ciliary disease genes, defects in which would be expected to cause disorganized ciliary position and impaired function

    The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells

    Get PDF
    INTRODUCTION: Loss of the cyclin-dependent kinase inhibitor p27 is associated with poor prognosis in breast cancer. The decrease in p27 levels is mainly the result of enhanced proteasome-dependent degradation mediated by its specific ubiquitin ligase subunit S phase kinase protein 2 (Skp2). The mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphoinositol 3' kinase (PI3K)/Akt pathway that down-regulates p27 levels in breast cancer. Rapamycin was found to stabilize p27 levels in breast cancer, but whether this effect is mediated through changes in Skp2 expression is unknown. METHODS: The expression of Skp2 mRNA and protein levels were examined in rapamycin-treated breast cancer cell lines. The effect of rapamycin on the degradation rate of Skp2 expression was examined in cycloheximide-treated cells and in relationship to the anaphase promoting complex/Cdh1 (APC\C) inhibitor Emi1. RESULTS: Rapamycin significantly decreased Skp2 mRNA and protein levels in a dose and time-dependent fashion, depending on the sensitivity of the cell line to rapamycin. The decrease in Skp2 levels in the different cell lines was followed by cell growth arrest at G1. In addition, rapamycin enhanced the degradation rate of Skp2 and down-regulated the expression of the APC\C inhibitor Emi1. CONCLUSION: These results suggest that Skp2, an important oncogene in the development and progression of breast cancer, may be a novel target for rapamycin treatment

    HMDB: the Human Metabolome Database

    Get PDF
    The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at

    Correction to: The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells

    No full text
    After the publication of this work [1], an error was noticed in Fig. 2b, Fig. 3a and Fig. 5b. The Skp1 loading control was accidentally duplicated. We apologize for this error, which did not affect any of the interpretations or conclusions of the article

    Advanced solā€“gel process for efficient heterogeneous ring-closing metathesis

    No full text
    Abstract Olefin metathesis, a powerful synthetic method with numerous practical applications, can be improved by developing heterogeneous catalysts that can be recycled. In this study, a single-stage process for the entrapment of ruthenium-based catalysts was developed by the solā€“gel process. System effectiveness was quantified by measuring the conversion of the ring-closing metathesis reaction of the substrate diethyl diallylmalonate and the leakage of the catalysts from the matrix. The results indicate that the nature of the precursor affects pore size and catalyst activity. Moreover, matrices prepared with tetraethoxysilane at an alkaline pH exhibit a better reaction rate than in the homogenous system under certain reaction conditions. To the best of our knowledge, this is the first study to present a one-step process that is simpler and faster than the methods reported in the literature for catalyst entrapment by the solā€“gel process under standard conditions
    corecore