289 research outputs found

    Common denominators in the immunobiology of IgG4 autoimmune diseases: What do glomerulonephritis, pemphigus vulgaris, myasthenia gravis, thrombotic thrombocytopenic purpura and autoimmune encephalitis have in common?

    Get PDF
    IgG4 autoimmune diseases (IgG4-AID) are an emerging group of autoimmune diseases that are caused by pathogenic autoantibodies of the IgG4 subclass. It has only recently been appreciated, that members of this group share relevant immunobiological and therapeutic aspects even though different antigens, tissues and organs are affected: glomerulonephritis (kidney), pemphigus vulgaris (skin), thrombotic thrombocytopenic purpura (hematologic system) muscle-specific kinase (MuSK) in myasthenia gravis (peripheral nervous system) and autoimmune encephalitis (central nervous system) to give some examples. In all these diseases, patients’ IgG4 subclass autoantibodies block protein-protein interactions instead of causing complement mediated tissue injury, patients respond favorably to rituximab and share a genetic predisposition: at least five HLA class II genes have been reported in individual studies to be associated with several different IgG4-AID. This suggests a role for the HLA class II region and specifically the DRβ1 chain for aberrant priming of autoreactive T-cells toward a chronic immune response skewed toward the production of IgG4 subclass autoantibodies. The aim of this review is to provide an update on findings arguing for a common pathogenic mechanism in IgG4-AID in general and to provide hypotheses about the role of distinct HLA haplotypes, T-cells and cytokines in IgG4-AID

    IL-21 and IL-21 Receptor Expression in Lymphocytes and Neurons in Multiple Sclerosis Brain

    Get PDF
    IL-17–producing CD4+ T cells (Th-17) contribute to the pathogenesis of experimental autoimmune encephalomyelitis and are associated with active disease in multiple sclerosis (MS). In addition to IL-17, Th-17 cells can also express IL-21, IL-22, and IL-6 under Th-17–polarizing conditions (IL-6 and transforming growth factor-β). In this study we investigated IL-21 and IL-21 receptor (IL-21R) expression in MS lesions by in situ hybridization and immunohistochemistry. We detected strongly IL-21+ infiltrating cells predominantly in acute but also in chronic active white matter MS lesions in which IL-21 expression was restricted to CD4+ cells. In contrast, IL-21R was much more broadly distributed on CD4+, CD19+, and CD8+ lymphocytes but not major histocompatibility complex class-II+ macrophages/microglia. Interestingly, in cortical areas we detected both IL-21 and IL-21R expression by neurons. These findings suggest role(s) for IL-21 in both the acute and chronic stages of MS via direct effects on T and B lymphocytes and, demonstrated for the first time, also on neurons

    Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

    Get PDF
    Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naĂŻve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion

    Th17 Cells Are Involved in the Local Control of Tumor Progression in Primary Intraocular Lymphoma

    Get PDF
    BACKGROUND: Th17 cells play an important role in the pathogenesis of many autoimmune diseases, but despite some reports of their antitumor properties, too little is known about their presence and role in cancers. Specifically, knowledge is sparse about the relation of Th17 to lymphoma microenvironments and, more particularly, to the microenvironment of primary intraocular B-cell lymphoma (PIOL), an aggressive lymphoma with a poor prognosis. METHODS AND PRINCIPAL FINDINGS: In this work, we investigated the presence of Th17 cells and their related cytokines in a syngeneic model of PIOL, a subtype of non-Hodgkin lymphoma. The very small number of lymphocytes trafficking in normal eyes, which represent a low background as compared to tumor-bearing eyes, allows us to develop the present model to characterize the different lymphocyte subsets present when a tumor is developing. IL-21 mRNA was expressed concomitantly with IL-17 mRNA in tumor-bearing eyes and intracellular expression of IL-17A and IL-21 in infiltrating CD4(+) T lymphocytes. Interestingly, IL-17A production by T cells was negatively correlated with tumor burden. We also showed that IL-21 but not IL-17 inhibits tumor cell proliferation in vitro. CONCLUSIONS: These data demonstrate that IL-17A and IL-21-producing CD4(+) T cells, referred as Th17 cells, infiltrate this tumor locally and suggest that Th17-related cytokines may counteract tumor progression via IL-21 production. Thus, Th17 cells or their related cytokines could be considered to be a new therapeutic approach for non-Hodgkin B-cell lymphomas, particularly those with an ocular localization

    Effects of 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) and Rosiglitazone on Human Vδ2+ T Cells

    Get PDF
    BACKGROUND:Thiazolidinediones (TZD) class of drugs, and 15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2) are immune regulators predicted to modulate human autoimmune disease. Their effects on gammadelta T cells, which are involved in animal model and human and animal autoimmune diseases, are unknown. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the activity of rosiglitazone (from the TZD class of drugs) and 15d-PGJ2 in human Vdelta2 T cells. We found that 15d-PGJ2 and rosiglitazone had different effects on Vdelta2 T cell functions. Both 15d-PGJ2 and rosiglitazone suppressed Vdelta2 T cell proliferation in response to IPP and IL2. However, only 15d-PGJ2 suppressed functional responses including cytokine production, degranulation and cytotoxicity against tumor cells. The mechanism for 15d-PGJ2 effects on Vdelta2 T cells acts through inhibiting Erk activation. In contrast, rosiglitazone did not affect Erk activation but the IL2 signaling pathway, which accounts for rosiglitazone suppression of IL2-dependent, Vdelta2 T cell proliferation without affecting TCR-dependent functions. Rosiglitazone and 15d-PGJ2 are designed to be peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and PPARgamma was expressed in Vdelta2 T cell. Surprisingly, when PPARgamma levels were lowered by specific siRNA, 15d-PGJ2 and rosiglitazone were still active, suggesting their target of action induces cellular proteins other than PPARgamma. CONCLUSIONS/SIGNIFICANCE:The current findings expand our understanding of how the immune system is regulated by rosiglitazone and 15d-PGJ2 and will be important to evaluate these compounds as therapeutic agents in human autoimmune disease

    Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis

    Get PDF
    Corticosteroids are standard treatment for patients with multiple sclerosis experiencing acute relapse. Because dyspeptic pain is a common side effect of this intervention, patients can be given a histamine receptor-2 antagonist, proton pump inhibitor or antacid to prevent or ameliorate this disturbance. Additionally, patients with multiple sclerosis may be taking these medications independent of corticosteroid treatment. Interventions for gastric disturbances can influence the activation state of the immune system, a principal mediator of pathology in multiple sclerosis. Although histamine release promotes inflammation, activation of the histamine receptor-2 can suppress a proinflammatory immune response, and blocking histamine receptor-2 with an antagonist could shift the balance more towards immune stimulation. Studies utilizing an animal model of multiple sclerosis indicate that histamine receptor-2 antagonists potentially augment disease activity in patients with multiple sclerosis. In contrast, proton pump inhibitors appear to favor immune suppression, but have not been studied in models of multiple sclerosis. Antacids, histamine receptor-2 antagonists and proton pump inhibitors also could alter the intestinal microflora, which may indirectly lead to immune stimulation. Additionally, elevated gastric pH can promote the vitamin B12 deficiency that patients with multiple sclerosis are at risk of developing. Here, we review possible roles of gastric acid inhibitors on immunopathogenic mechanisms associated with multiple sclerosis
    • …
    corecore