41 research outputs found

    Novel Targeting of Cyclooxygenase-2 (COX-2) Pre-mRNA Using Antisense Morpholino Oligonucleotides Directed to the 3Ј Acceptor and 5Ј Donor Splice Sites of Exon 4: Suppression of COX-2 Activity in Human Amnion-Derived WISH and Myometrial Cells

    Get PDF
    ABSTRACT Increased expression of cyclooxygenase-2 (COX-2) has been implicated in the onset of both term and preterm labor. In this context, both selective and nonselective COX-2 inhibitors have been used in clinical trials to determine their efficacy in delaying preterm labor. However, recent evidence indicates that these tocolytics may have potentially adverse fetal and maternal side effects. Therefore, the development of more specific and nontoxic agents to inhibit COX-2 needs to be considered. We have evaluated whether antisense morpholino oligonucleotides have therapeutic potential in inhibiting COX-2 by specifically targeting both the 3Ј and 5Ј acceptor and donor sites of exon 4 of COX-2's pre-mRNA sequence. Confocal microscopy on "live" cells illustrated high levels of penetrance of antisense morpholino oligonucleotides using the Endo-Porter formula (GeneTools, LLC, Philomath, OR), with delivery efficiencies of 82 and 78%, respectively, in amnion-derived WISH and myometrial cells. Substantial inhibition by the morpholino oligonucleotides of COX-2 expression, induced by lipopolysaccharide administration, was observed at both the mRNA and protein levels. Loss of enzymic activity of COX-2 was confirmed using a sensitive COX enzyme activity assay, which reflects the rate of conversion of arachidonic acid to prostaglandin H 2. Our results indicate that antisense morpholino oligonucleotides significantly inhibit expression and activity of this enzyme in in vitro cultures of amnion-WISH and myometrial cells. The potential thus exists that a similar approach can be mimicked in vivo to produce a highly specific and nontoxic strategy to inhibit COX-2 activity with its subsequent effects on the better management of preterm labor and other inflammatory conditions

    Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour

    Get PDF
    Considerable effort has been expended in attempting to distinguish genes that contribute to initiating the onset of term and preterm labour (PTL) from those that change in expression as a consequence of the progression of labour. The ability to define more clearly the genes involved in triggering labour contractions should lead to the development of new effective and safer strategies to prevent preterm birth. There is ample evidence to suggest that specific genes are co-ordinately regulated within the upper and lower regions of the myometrium prior to and during parturition and many of these genes are regulated by alternative pre-mRNA splicing. This mini-review highlights that expression of a range of different splicing factors, with defined roles in pre-mRNA splicing, is both temporally and spatially regulated within the uterine smooth muscle during pregnancy and labour. Moreover, several of these splicing factors play key roles in controlling the differential expression of specific regulatory proteins involved in uterine signalling and uterine quiescence. In addition, antisense morpholino oligonucleotide manipulation of pre-mRNA splicing may have potential in defining and targeting uterine pro-labour genes and thus contribute to the development of new therapeutic approaches to prevent PTL

    Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor 4

    Get PDF
    AbstractMetal-on-metal (MoM) hip replacements, often manufactured from a cobalt-chrome alloy, are associated with adverse reactions including soft tissue necrosis and osteolysis. Histopathological analysis of MoM peri-implant tissues reveals an inflammatory cell infiltrate that includes macrophages, monocytes and neutrophils.Toll-like receptor 4 (TLR4) is an innate immune receptor activated by bacterial lipopolysaccharide. Recent studies have demonstrated that cobalt ions from metal-on-metal joints also activate human TLR4, increasing cellular secretion of inflammatory chemokines including interleukin-8 (IL-8, CXCL8) and CCL2. Chemokines recruit immune cells to the site of inflammation, and their overall effect depends on the chemokine profile produced.This study investigated the effect of cobalt on the secretion of inflammatory cytokines CCL20 and IL-6. The chemotactic potential of conditioned media from a cobalt-stimulated human monocyte cell line on primary monocytes and neutrophils was investigated using an in vitro transwell migration assay. The role of TLR4 in observed effects was studied using a small molecule TLR4-specific antagonist.Cobalt ions significantly increased release of CCL2 and IL-6 by MonoMac 6 cells (P<0.001). Conditioned media from cobalt-stimulated cells significantly increased monocyte and neutrophil chemotaxis in vitro (P<0.001). These effects were abrogated by the TLR4 antagonist (P<0.001) suggesting that they occur through cobalt activation of TLR4.This study demonstrates the role of TLR4 in cobalt-mediated immune cell chemotaxis and provides a potential mechanism by which cobalt ions may contribute to the immune cell infiltrate surrounding failed metal hip replacements. It also highlights the TLR4 signalling pathway as a potential therapeutic target in preventing cobalt-mediated inflammation

    Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons

    Get PDF
    Alternative splicing—the production of multiple messenger RNA isoforms from a single gene—is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2β have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous—but not individual—depletion of Tra2α and Tra2β induces substantial shifts in splicing of endogenous Tra2β target exons, and that both constitutive and alternative target exons are under dual Tra2α–Tra2β control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability

    Alternative splicing and the progesterone receptor in breast cancer

    Get PDF
    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions

    Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour"</p><p>http://www.biomedcentral.com/1471-2393/7/S1/S13</p><p>BMC Pregnancy and Childbirth 2007;7(Suppl 1):S13-S13.</p><p>Published online 1 Jun 2007</p><p>PMCID:PMC1892054.</p><p></p>ries blocks access by splicing factors (SF) to the splice sites and redirects the splicing machinery to skip out the exon. This results in a shortened mRNA transcript and a truncated protein or no protein. Effect of MOs targeted to the pre-mRNA of exon 4 of the COX-2 gene. Substantial inhibition by MOs of COX-2 protein expression, induced by LPS, was observed at the protein level, means ± S.E.M. (= 6). Loss of enzyme activity due to MOs inhibition was also determined; this assay measures COX-2 activity by calculating the rate of conversion of arachidonic acid to PGH[18]. Data shown as % inhibition. Data are mean ± S.E.M. (= 6)

    Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour"</p><p>http://www.biomedcentral.com/1471-2393/7/S1/S13</p><p>BMC Pregnancy and Childbirth 2007;7(Suppl 1):S13-S13.</p><p>Published online 1 Jun 2007</p><p>PMCID:PMC1892054.</p><p></p>RNAs and in turn influence and switch the expression and ratios of the specific protein isoforms that are generated. In theory, changes in the levels of splicing factors could generate a) proteins with enhanced activity; b) proteins with different functions; c) proteins with abolished functions and d) provide a means to regulate gene expression by increasing the rate of nonsense-mediated decay of affected mRNAs

    Regulation of Mcl-1 by SRSF1 and SRSF5 in cancer cells.

    Get PDF
    Up-regulation of the apoptosis-regulatory gene Mcl-1 (myeloid cell leukemia-1) occurs in different cancer types and is linked with drug resistance to cancer therapies. It is well known that Mcl-1 pre-mRNA undergoes alternative splicing events to produce two functionally distinct proteins, Mcl-1(S) (pro-apoptotic) and Mcl-l(L) (anti-apoptotic); the latter isoform is predominant in different cancers including breast and ovarian cancer cells. In the present study we report that the RNA-binding protein (RBP) and proto-oncogene SRSF1 (serine and arginine-rich splicing factor 1) influences splicing of Mcl-1 in both MCF-7 and MDA-MB-231 breast cancer cells and JAR choriocarcinoma cells; we also show for the first time that another RBP SRSF5 affects splicing of Mcl-1 in the MCF-7 cells. Moreover, we report that SRSF1 is involved in other aspects of Mcl-1 regulation with knockdown of SRSF1, by RNAi, resulting in a significant decrease in Mcl-1 protein levels in MCF-7 cells but an increase in JAR cells, respectively, by potentially affecting protein stability and translation of Mcl-l. The key findings from this study highlight the importance of the cellular context of different cancer cells for the function of multifunctional RBPs like SRSF1 and have implications for therapeutic approaches employed to target Mcl-1

    Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    No full text
    Overexpression of human epidermal growth factor receptor (HER-2) occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping) increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention) and p100 (results from intron 15 retention) inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets
    corecore