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Human Tra2 proteins jointly control a CHEK1
splicing switch among alternative and
constitutive target exons
Andrew Best1, Katherine James2, Caroline Dalgliesh1, Elaine Hong3, Mahsa Kheirolahi-Kouhestani1,

Tomaz Curk4, Yaobo Xu1, Marina Danilenko1, Rafiq Hussain1, Bernard Keavney1,5, Anil Wipat2,

Roscoe Klinck6, Ian G. Cowell7, Ka Cheong Lee7, Caroline A. Austin7, Julian P. Venables1, Benoit Chabot6,

Mauro Santibanez Koref1, Alison Tyson-Capper3 & David J. Elliott1

Alternative splicing—the production of multiple messenger RNA isoforms from a single

gene—is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha

(Tra2a) and Tra2b have both been implicated in the regulation of alternative splicing, their

relative contributions to this process are not well understood. Here we find simultaneous—

but not individual—depletion of Tra2a and Tra2b induces substantial shifts in splicing of

endogenous Tra2b target exons, and that both constitutive and alternative target exons are

under dual Tra2a–Tra2b control. Target exons are enriched in genes associated with chro-

mosome biology including CHEK1, which encodes a key DNA damage response protein. Dual

Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the

accumulation of the DNA damage marker gH2AX and decreased cell viability. We conclude

Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog

compensation to control pathways essential to the maintenance of cell viability.
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H
uman genes encode long precursor messenger RNAs
(mRNAs) that are extensively processed before nuclear
export. This maturation includes the splicing of exons,

which normally occurs with high fidelity to create functional
mRNAs1. Constitutive exons splice into all mRNAs transcribed
from a gene, while alternative exons are sometimes included and
sometimes skipped2. Human protein-coding genes each produce
an average of three mRNA isoforms through alternative splicing,
many of which are differentially regulated3. RNA binding
proteins play a key role in transforming precursor RNAs into
mRNAs. Although RNA-binding proteins can regulate many
transcripts in parallel, some splicing regulatory proteins
preferentially engage with transcripts belonging to specific
functional classes, including Nova proteins (synapse functions),
Fox proteins (neuromuscular, cytoskeleton and EMT functions),
PTB proteins (cytoskeleton functions) and T-STAR (synapse
functions)4–8.

Transformer2 (Tra2) proteins are involved in splicing
control9,10. First discovered in insects, Tra2 proteins form an
essential component of the alternative splicing complex that
controls fly sexual differentiation11,12. Tra2 proteins are
conserved across the animal kingdom, but separate gene
paralogs encoding Tra2a and Tra2b proteins evolved early in
vertebrate evolution13,14. Knockout experiments in mice show
that Tra2b is essential for embryonic and brain development15–18.
In humans, Tra2b expression levels change in several cancers
(reviewed by Best et al.19), and Tra2b is implicated in the
pathology of other diseases including spinal muscular atrophy20,
Alzheimer’s disease21 and frontotemporal dementia and
Parkinsonism linked to chromosome 17 (ref. 22).

Tra2 proteins have amino- and carboxy-terminal domains
enriched in arginine and serine residues (RS domains) flanking a
single central RNA recognition motif (RRM) and so resemble the
relatively well characterized core group of 12 SR proteins that
control both constitutive and alternative splicing as well as other
aspects of RNA metabolism23–25. Each core SR protein contains
N-terminal RRMs and single C-terminal RS domains. However,
unlike the core SR proteins all current data implicate Tra2
proteins solely in alternative splicing rather than constitutive
splicing10,26, and only SR proteins and not Tra2 proteins can
provide splicing activity to S100 extracts26.

To regulate splicing inclusion Tra2b binds to AGAA-rich and
CAA-rich target RNA sequences. These RNA protein interactions
have been resolved at the atomic level9,27. Endogenous Tra2b
target RNAs have been identified using HITS-CLIP18, RIP-seq28,
shRNA depletion29 and microarrays17, but important
fundamental questions still remain as to the identity of the
biological targets and the functions of vertebrate Tra2 proteins.
These include whether endogenous Tra2a and Tra2b proteins
jointly control the same splicing targets, and if so what these
shared targets are? Although Tra2a and Tra2b both activate
splicing of the same model exons when overexpressed in
transfected HEK-293 cells (suggesting redundant functions)18,
the Tra2a gene alone is not sufficient to maintain viability in
Tra2b knockout mice (suggesting specific functions)15. Another
question relates to how Tra2a and Tra2b interact with each
other? We previously found that Tra2b protein binds to a poison
exon in the TRA2A gene to activate poison exon inclusion18.
Poison exons introduce premature translation termination
codons into mRNAs so as to inhibit translation of full-length
proteins and are often regulatory18,30–32, but whether Tra2a
might reciprocally control Tra2b expression is not known.

Here we address these questions in human MDA-MB-231 cells
that model invasive breast cancer. We find asymmetric splicing
feedback control pathways between Tra2a and Tra2b that buffer
splicing defects caused by depletion of either Tra2a or Tra2b

protein alone. Overriding these feedback control pathways by
joint depletion of both Tra2a and Tra2b globally identifies Tra2-
dependent target exons, and reveals critical roles for these
proteins in DNA damage control and cell viability.

Results
Tra2b efficiently suppresses Tra2a protein expression. To test
for in vivo interactions between Tra2a and Tra2b proteins, we
monitored their expression levels using western blots. Consistent
with predictions from our previous study18, Tra2a protein levels
were normally very low but significantly increased after small
interfering RNA (siRNA)-mediated depletion of Tra2b (Fig. 1a
top panel, compare lanes 1 and 3, and Fig. 1b). Although weak,
the Tra2a western blot signal was of the predicted size and was
almost completely eliminated following transfection with a
TRA2A-specific siRNA (Fig. 1a top panel, compare lanes 1 and
2). Tra2a protein depletion had less effect on Tra2b protein levels
(Fig. 1a, middle panel and Fig. 1b). Western blot analysis
confirmed this effect for two independent sets of siRNAs targeted
against different parts of the respective mRNAs (Supplementary
Fig. 1).

Consistent with Tra2b protein repressing Tra2a expression via
poison exon activation, siRNA-mediated depletion of Tra2b led
to strongly reduced splicing inclusion of the TRA2A poison exon
(Fig. 1d, upper panel). siRNA-mediated depletion of Tra2a
protein led to a smaller but detectable effect on splicing inclusion
of the TRA2B poison exon (Fig. 1d, lower panel). Analysis of
TRA2A and TRA2B steady state mRNA expression levels by
quantitative PCR confirmed that each protein also negatively
regulates the expression of the other at the RNA level (Fig. 1c).

The TRA2A and TRA2B genes are differentially expressed.
RNA-seq of MDA-MB-231 cells indicated that the TRA2B gene is
expressed at much higher levels than the TRA2A gene (Fig. 1e
shows one of three biological replicate RNA-seq analyses, with
the height of the y axis showing read depth and so indicating
relative gene expression levels). This provides a potential
mechanism for why Tra2b represses Tra2a protein expression
more than vice versa, since lower cellular concentrations of Tra2a
would be less able to activate splicing of the TRA2B poison exon.

We used iCLIP33 to systematically map the transcriptome-wide
binding sites of human Tra2b in MDA-MB-231 cells.
Endogenous Tra2b protein was efficiently immunoprecipitated
along with radiolabelled crosslinked RNA. A single radiolabelled
RNA protein adduct of B40 kDa was identified at high RNase
concentrations, just above the known molecular weight of
uncrosslinked endogenous Tra2b protein (37 kDa) (arrowed in
Supplementary Fig. 2a). Lower RNase concentrations enabled
endogenous Tra2b binding sites to be mapped across the MDA-
MB-231 cell transcriptome in biological triplicate iCLIP
experiments. Following deep sequencing, 7,443,903 reads were
successfully mapped back to the human genome, of which
3,338,710 were unique cDNA reads used for downstream analysis
(Supplementary Data 1). These individual sequencing reads are
subsequently referred to as iCLIP tags. The only clusters of Tra2b
iCLIP tags, which mapped to the human TRA2B and TRA2A
genes from all three biological replicates were within their
respective poison exons (Fig. 1e). Despite much lower levels of
overall TRA2A gene expression, the TRA2A poison exon had a
similar number of Tra2b iCLIP tags as the TRA2B poison exon.
This suggests the TRA2A poison exon is a stronger physiological
target for Tra2b binding than the TRA2B poison exon (the
TRA2A poison exon also has a much higher density of AGAA
Tra2b binding sites than the TRA2B poison exon18).
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Endogenous Tra2a functionally compensates for loss of Tra2b.
The most frequently enriched pentamers recovered in the iCLIP
tags were highly enriched in AGAA nucleotide sequences
(Supplementary Fig. 2b), which is the Tra2b binding site pre-
dicted by HITS-CLIP for endogenous mouse Tra2b, RIP-seq and
from SELEX experiments using purified Tra2b proteins18,26,28.
However, our combined human iCLIP data in MDA-MB-231
cells provided substantially more coverage than previously

obtained in mouse testis18 (in which just 177,457 reads were
mapped back to the mouse genome). In total, 1,546,290 (44.8%)
of unique cDNAs mapped to intronic regions, suggesting
the Tra2b iCLIP experiment largely captured Tra2b interactions
with pre-mRNAs. However, a further 1,169,374 (33.8%) of
unique cDNAs mapped to exons (50UTR, 30UTR or ORF), despite
exons comprising only B1% of the genome. After correcting
for the relative size of each genomic region (by dividing the
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Figure 1 | Tra2b regulates Tra2a protein expression. (a) Western blot analysis showing depletion of TRA2B induces reciprocal upregulation of Tra2a
protein expression, whereas depletion of TRA2A had minimal effect on Tra2b protein expression. (b) Quantitation of cross-regulation between Tra2a and

Tra2b at the protein level (Tra2a and Tra2b protein expression were quantified relative to a–Tubulin from three western blots using independent biological

replicates). (c) Quantitation of cross-regulation between Tra2a and Tra2b at the RNA level from quantitative PCR analysis of three independent biological

replicates in MDA-MB-231 cells. (d) Splicing inclusion of the TRA2A poison exon is strongly reduced by depletion of endogenous Tra2b protein, whereas

splicing inclusion of the TRA2B poison exon is less affected by depletion of Tra2a protein. Splicing patterns were monitored by RT–PCR between flanking

exons (arrowed) followed by capillary electrophoresis. (e) Screenshot from the UCSC genome browser35 showing the TRA2B and TRA2A genes, and the

positions of aligned RNA-seq reads (green peaks) and Tra2b binding (orange clusters of significant cross-linking by Tra2b protein identified by biological

triplicate iCLIP experiments) in MDA-MB-231 cells. Probability (P) values were calculated using an independent two-sample t-test between negative

control siRNA-treated cells and the gene-specific siRNA-treated cells (statistical significance shown as: *Po0.05, **Po0.01, ***Po0.0001). All data

represented by bar charts was generated from three biological replicates and error bars represent the s.e.m.
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number of unique cDNAs mapping to each genomic region by
the relative size of that region within the genome), we find that
Tra2b binding is highly enriched within exons: 76.8% of Tra2b
iCLIP tags mapped to exons (50UTR, 30UTR or ORF), while a
further 20.4% mapped to non-coding RNAs (Supplementary
Fig. 2c).

We used our iCLIP data to screen for endogenous exons
controlled by human Tra2b. Alternative exon junctions
(þ /� 300 bp of either splice site) were stratified to find those
with the highest number of iCLIP tags relative to overall iCLIP
coverage within the same gene. To test whether upregulation of
Tra2a protein expression could functionally compensate in
splicing regulation for depletion of Tra2b, we then monitored
percentage splicing inclusion (PSI) of associated exons after single
depletion of either Tra2a or Tra2b, or after combined depletion
of both Tra2a and Tra2b proteins.

Clusters of Tra2b iCLIP tags mapped to alternative exons in
the ATRX, GLYR1 and CEP95 genes (Fig. 2a). Single depletion of
either Tra2a or Tra2b had only a small effect on the endogenous
splicing pattern of these three exons, but joint depletion of both
Tra2a and Tra2b substantially decreased their splicing inclusion

(Fig. 2b). We obtained similar results with 14/14 Tra2b target
exons identified by iCLIP analysis (Fig. 2c. Individual data for
each of these tested exons are shown in Supplementary Fig. 3). In
fact, of these 14 tested exons, some less-responsive exons
including cassette exons within PAM and BDP1 only responded
to depletion of both Tra2 proteins, and not to single depletion of
Tra2b at all (Supplementary Fig. 3).

These data are consistent with maintenance of splicing patterns
via paralog compensation, that is, following depletion of Tra2b,
upregulated Tra2a is able to functionally substitute for Tra2b and
largely maintain Tra2 target exon inclusion. The Tra2b target
exons inhibited more substantially by joint Tra2 protein depletion
compared with single depletion of either Tra2a or Tra2b included
SMN2 exon 7 (Supplementary Fig. 3), which is a candidate target
for gene therapy in spinal muscular atrophy20.

Tra2a and Tra2b control constitutive exon splicing patterns.
Splicing profiles of candidate Tra2b target exons (containing
Tra2b iCLIP tag coverage) were next analysed using RNA-seq
after joint depletion of Tra2a and Tra2b proteins, and changes
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Figure 2 | Endogenous Tra2a functionally compensates for loss of Tra2b. (a) UCSC genome browser screenshot35 showing significant clusters of iCLIP

tags mapping directly to alternatively spliced exons within the CEP95, GLYR1 and ATRX genes (position of target alternative exons highlighted in grey).

(b) Splicing inclusion of novel Tra2b target exons within ATRX, GLYR1 and CEP95 were only slightly affected by depletion of either endogenous Tra2a or

Tra2b proteins, but were strongly affected by joint depletion of both Tra2a and Tra2b (red). PSI levels were measured by RT–PCR and capillary gel

electrophoresis (lower panels) in three biological replicates (upper panels). (c) Splicing inclusion of 14 novel Tra2b target exons showed minimal splicing

response to single depletion of either Tra2a or Tra2b, but showed highly significant splicing changes after joint depletion of both Tra2 proteins (complete

data for all 14 exons is provided in Supplementary Fig. 4). Probability (P) values were calculated using an independent two-sample t-test between PSI levels

of negative control siRNA-treated cells and TRA2A/TRA2B siRNA-treated cells (statistical significance: *Po0.05, **Po0.01, ***Po0.0001). All data

represented by bar charts was generated from three biological replicates where error bars represent the s.e.m.
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validated by reverse transcriptase (reverse transcriptase–PCR).
From the initial panel of 30 Tra2 protein-responsive alternative
exons that we identified, 7/30 were included at 100% and 17/30
had a PSI greater or equal to 95% in MDA-MB-231 cells (Fig. 3a).
These results suggested that Tra2 proteins might be important
for the inclusion of constitutive exons (in addition to their
expected function in alternative exon splicing regulation), or
alternatively that Tra2 protein expression levels in MDA-MB-231

cells are sufficient to promote 100% inclusion of some alternative
exons.

To distinguish between these possibilities, we used our iCLIP
and RNA-seq data to search for splicing changes in exons that
have never previously been annotated as alternatively spliced in
human cells34,35. Such exons were found in the ANKRD1, SMC4,
NFXL2, NIPBL and PDCD6IP genes. Each of these five exons
were spliced at 100% PSI in MDA-MB-231 cells but skipped at
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different levels after Tra2 protein depletion (Fig. 3b). The
constitutively spliced exon within ANKRD1 showed the largest
change (Fig. 3c), a -73% point switch in PSI after joint depletion
of Tra2a and Tra2b. To further dissect splicing control, we cloned
the ANKRD1 exon and its flanking intronic sequences between
b–globin exons in a minigene construct. Transfection
experiments showed the ANKRD1 exon is included at 72% PSI
when expressed from this minigene, indicating it lacks some
important sequences for splicing (the endogenous ANKRD1 exon
was 100% included in these transfected HEK-293 cells, Fig. 3d).
Two clusters of GAA-rich Tra2b binding sites were present in the
ANKRD1 exon (Tra2b binding site clusters 1 and 2). Mutation of
either Tra2b binding site cluster negatively impacted splicing
inclusion, showing an essential role for these binding sites in
modulating the inclusion of the ANKRD1 exon. In particular,
mutation of Tra2b binding site cluster 1 (to create Mutant M1)
completely abolished splicing inclusion of the ANKRD1
constitutive exon (Fig. 3d, right panel).

In total, we identified and validated 53 human splicing targets,
which were both directly bound and jointly controlled by Tra2
proteins, including both alternative and constitutive exons
(Fig. 4a; Supplementary Fig. 10; Supplementary Data 2). As well
as SMN2 exon 7 (ref. 20), these included the NASP-T exon and
the TRA2A poison exon, orthologs of which have both been
previously identified as functional Tra2b splicing targets in the
mouse testis by HITS-CLIP18. The NASP-T exon was also in the
data set of Tra2b targets identified by RIP-seq28. However, the
vast majority of the dual Tra2a/Tra2b target exons identified here
are novel. The PSI changes for individual genes in response to
joint Tra2a and Tra2b protein depletion ranged between � 4 and
� 92% points (measured by RT–PCR, Fig. 4a; Supplementary
Data 2), indicating that individual Tra2-dependent exons have
different intrinsic requirements for Tra2 proteins. The length of
Tra2-dependent exons ranged from 64 nucleotides at the smallest
(a cassette exon in the SMYD2 gene, which showed a � 5% point
switch in PSI in response to Tra2 protein depletion), to 5916
nucleotides at the largest (an unusually large internal cassette
exon in the SON gene, which showed a � 8 point PSI change in
response to endogenous Tra2 protein depletion) (Supplementary
Data 2). A further 38 exons had Tra2b iCLIP tag coverage, but
did not detectably respond to Tra2 protein depletion in MDA-
MB-231 cells: possibly this latter class of exons either might need
a relatively small amount of Tra2 protein to be included, or
alternatively they might not be controlled by Tra2 proteins in
MDA-MB-231 cells (Supplementary Data 2). In a comparison
between Tra2 responsive and non-responsive exons, the only
statistically significant difference was the density of Tra2b
binding sites in the more highly responsive exons (exons
showing 415 PSI change following joint Tra2a/Tra2b
depletion, Fig. 4b). High resolution iCLIP maps of the
individual exons are shown in Supplementary Fig. 10.

Tra2 proteins are highly specific splicing regulators. To establish
the relative role of Tra2 proteins in controlling the identified panel
of target exons, we probed a custom plate containing cDNAs, where
we had systematically knocked down 53 known splicing regulators
in MDA-MB-231 cells5 (Fig. 4c). Strikingly, of all the knockdowns
tested, only double knockdown of Tra2 proteins shifted ANKRD1
splicing (constitutive exon) and joint Tra2 depletion also had the
largest effect on splicing for GLYR1 (alternative exon). An
intermediate situation was observed for SMC4 (constitutive exon)
in which knockdown of SNRP70 (encoding U170K) also reduced
splicing inclusion, as did knockdown of SRPK1. The splicing
inclusion pattern of CHEK1 was strongly shifted (� 78 point PSI
switch) by joint depletion of Tra2 proteins, but consistent with

broader mechanisms of combinatorial control, significant shifts
were also seen after depletion of three core U2 snRNP components,
which are thought to be important for splice site commitment for
all exons. Depletion of other constitutive splicing factors such as
SFRS2, hnRNPK, hnRNPC2, KHSRP and CDC5L also affected
CHEK1 exon 3 splicing.

Since our panel of splicing factor knockdowns was not
exhaustive, we cannot exclude all combinations of combinatorial
control. However, our data are at least consistent with Tra2
proteins being among the most quantitatively important splicing
regulators for their individual target exons.

Tra2 splicing targets associate with chromosome biology. Gene
ontology (GO) enrichment analysis of the 53 human genes con-
taining Tra2-dependent exons revealed an enrichment of five
functionally similar biological processes (Fig. 5a). Eleven of the 53
genes were annotated to one or more of these processes, with ten
of the eleven genes being annotated to the term ‘chromosome
organization’. There was significant overlap in annotation
between this process and annotation to the conceptually related
terms ‘histone modification’ and ‘chromatin modification’
(Fig. 5b).

The BioGRID database36 was used to retrieve a network of
functional interaction data involving genes containing Tra2-
dependent exons. In addition to the eleven genes directly
annotated to the five enriched GO processes in Fig. 5a, a
further 23 of the 53 genes (43.4%) that contain Tra2-dependent
exons also have functional interactions with genes annotated to
these terms (Supplementary Fig. 4, and summarized in Fig. 5c).
Interestingly, although indirectly connected within the network
via these annotated genes, none of the 53 genes containing
validated Tra2-dependent exons directly interact with one
another in the BioGRID database (Supplementary Fig. 4).

Tra2 proteins control splicing of a key checkpoint protein.
Among the Tra2 target exons involved in chromosome biology
was exon 3 of the CHEK1 gene, which encodes the serine/
threonine protein kinase CHK1 that is involved in checkpoint
control in response to DNA damage. iCLIP analysis identified
significant Tra2b binding over CHEK1 exon 3 (Fig. 6a), and we
observed a � 55 point PSI switch for this exon in MDA-MB-231
cells after joint Tra2 protein depletion (Fig. 6b). Joint depletions
of Tra2a and Tra2b proteins also indicate CHEK1 exon 3 splicing
is under similar control in multiple cell types including MCF7,
PC3 and HeLa (Fig. 6b).

Tra2b iCLIP tags mapped throughout CHEK1 exon 3, but were
particularly enriched towards the 30 splice site (Fig. 7a). We
confirmed CHEK1 exon 3 is a direct target for Tra2b binding
in vitro by electrophoretic mobility shift assays (EMSAs) using
radiolabelled RNA probes corresponding to portions of the exon
sequence (Fig. 7b). RNA probe A corresponds to the part of
CHEK1 exon 3 with the most Tra2b iCLIP tags, and also contains
the most predicted binding sites for Tra2b (shaded green in
Fig. 7B, right hand side). RNA probe A was very efficiently shifted
by even the lowest tested concentrations (25 ng) of Tra2b protein.
RNA probe B did not bind Tra2b protein as tightly (around
200 ng Tra2b protein was needed to see a comparable shift) and
also contained fewer Tra2b binding sites and mapped iCLIP tags.
A control RNA probe corresponding to the flanking intron
sequence did not shift even at the highest concentrations of Tra2b
protein (this intron sequence contained no predicted Tra2b
binding sites).

We confirmed that CHEK1 exon 3 is a direct target for Tra2b
splicing regulation using a minigene construct in which CHEK1
exon 3 is flanked by b-globin exons (Fig. 7c). After transfection of
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this minigene into HEK-293 cells, CHEK1 exon 3 was skipped,
but its splicing inclusion was strongly induced in response to
co-transfection with either Tra2b-GFP or Tra2a-GFP. No
CHEK1 exon 3 splicing activation was observed after co-

transfection of either Tra2bDRRM-GFP (lacking the RRM) or
GFP alone. Furthermore, point mutations of the Tra2b binding
sites within the exon (wild-type binding sites shaded green,
mutations shaded red in Fig. 7c right hand side) completely
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Figure 4 | Identification of exons jointly controlled by Tra2a and Tra2b proteins. (a) Scatterplot showing amplitude of splicing response of 53 exons

to joint depletion of endogenous Tra2a and Tra2b in MDA-MB-231 cells. The genes corresponding to the highest amplitude PSI changes after joint

Tra2 protein depletion are labelled and highlighted in red. (b) Analysis of Tra2b binding site density (measured as a percentage of exon content) within

groups of Tra2b target exons identified by iCLIP. Tra2b binding site density comparisons are shown between the Tra2a and Tra2b poison exons; all exons

that showed a greater than 15% point PSI change following joint Tra2a and Tra2b depletion; and in the exons that bound Tra2b based on iCLIP tag coverage

but did not respond to Tra2a and Tra2b depletion. Probability (P) values were calculated using an independent two-sample t-test (statistical significance:

*Po0.05, **Po0.01, ***Po0.0001). (c) Regulation of ANKRD1, SMC4, GLYR1 and CHEK1 splice variants following knockdown of a panel of RNA binding

proteins (RBPs) in MDA-MB-231 cells5. The y axis shows PSI change after joint Tra2a and Tra2b depletion, with a negative number indicating splicing

repression in the absence of these proteins.
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abolished splicing activation in response to coexpressed Tra2
proteins.

Tra2 proteins are required for CHK1 protein expression. We
carried out further experiments to test if Tra2 proteins are also
required for expression of full-length CHK1 protein. On western
blots, we could detect expression of a single major protein CHK1
isoform in MDA-MB-231 cells, corresponding to the expected
size of full-length CHK1 protein (54 kDa). This band was sub-
stantially reduced following treatment with an siRNA directed
against CHEK1 mRNA (Fig. 8a). Consistent with joint control of
CHEK1 expression by Tra2a and Tra2b, levels of full-length
CHK1 protein were also substantially reduced after joint

depletion of Tra2a and Tra2b. Expression of full-length CHK1
protein was also reduced after joint Tra2a and Tra2b protein
depletion in MCF7, PC3 and to a lesser extent HeLa cells
(Supplementary Fig. 7a).

A shorter isoform of the CHK1 protein (termed CHK1-S) has
previously been reported to be translated from an alternative
downstream translational initiation site in exon 3-skipped
CHEK1 mRNA37. In our experiments, although depletion of
Tra2 proteins switched splicing of CHEK1 exon 3, they did not
lead to an observable increase in any shorter isoform of the CHK1
protein. We detected much lower expression levels of possible
shorter CHK1 protein isoforms on western blots compared with
full-length CHK1 protein (the B43KDa protein that would
correspond in size to CHK1-S could only be seen on long
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Figure 7 | Human Tra2a and Tra2b regulate CHEK1 exon 3 through direct RNA protein interactions. (a) High resolution map CHEK1 exon 3 showing

mapped iCLIP tags (purple bars) and the three subregions of the pre-mRNA, which were used to generate RNA probes for EMSAs. This screenshot was

downloaded from the UCSC genome browser35. (b) Molecular interactions between purified Tra2b protein and RNA probes in and around CHEK1 exon 3

(the location of these probes is shown in part a). The sequences of the probes are shown to the right, with predicted Tra2b binding sites shaded green.

(c) Splicing patterns of mRNAs made from a minigene containing CHEK1 exon 3 in response to coexpressed fusion proteins, expressed either as a PSI

(upper bar chart, n¼ 3 independent experiments) or shown as one of the original capillary electrophoresis gel-like images from a single experiment

(lower image). The sequence of CHEK1 exon 3 is shown to the right, with the predicted Tra2b binding sites shaded green (above) and the altered sequence

after these sites were mutated (below, the altered nucleotides are shaded red). Probability (P) values were calculated using an independent two-sample

t-test between PSI levels of the minigene-derived CHEK1 exon 3 in cells cotransfected with GFP and each of the different Tra2 constructs (statistical

significance: *Po0.05, **Po0.01, ***Po0.0001). All data represented by bar charts was generated from three biological replicates and error bars

represent s.e.m.
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Figure 8 | Human Tra2 proteins are essential for expression of full-length CHK1 protein and to maintain cell viability. (a) Full-length CHK1 protein

expression is depleted by siRNAs specific to CHEK1mRNA and also by joint siRNAs specific to the TRA2A and TRA2BmRNAs. In each case, samples from three

independent replicate experiments were analysed in parallel. Also detected in these samples are levels of gH2AX and a-tubulin. (b) Expression of total H2AX

and gH2AX after joint Tra2a and Tra2b depletion, or depletion with a control siRNA in MDA-MB-231 cells and MCF7 cells. (c) Measurement of cell density

120h after transfection of siRNAs targeting different regions of the TRA2A and TRA2BmRNAs or CHEK1mRNA. (d) Joint (but not single) depletion of Tra2a and

Tra2b proteins reduced MDA-MB-231 cell viability measured by MTT assays after siRNA transfection. (e) Depletion of CHK1 protein alone was sufficient to

reduce viability of MDA-MB-231 cells measured by MTTassay at different time points after siRNA transfection. (f) Joint depletion of Tra2a and Tra2b reduced

the proportion of EdU-positive MDA-MB-231 cells 96h after siRNA transfection. Separate panels, shown clockwise from top left, show fluorescence-activated

cell sorting analysis of control MDA-MB-231 cells incubated without EdU; cells transfected with a negative control siRNA and incubated with EdU; cells

transfected with siRNAs specific for TRA2A and TRA2B and incubated with EdU; and cells transfected with a single siRNA specific to CHEK1 and incubated with

EdU. Probability (P) values were calculated using an independent two-sample t-test comparing the percentage of EdU-positive cells of negative control siRNA-

treated cells and the gene-specific siRNA-treated cells (statistical significance: *Po0.05, **Po0.01, ***Po0.0001). Data were generated from three biological

replicates. (g) Examples of abnormal nuclear morphology observed within cells transfected with siRNAs specific for TRA2A and TRA2B (lower panel) compared

with the normal morphology seen in negative control siRNA-treated cells (upper panel). Cells were stained with 4’,6-diamidino-2-phenylindole, and these

images were taken 96h after siRNA transfection. The scale bar shows 5mM. Uncropped western blots are shown in Supplementary Figs 11–15.
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exposure, and decreased on siRNA treatment,Supplementary
Fig. 7b). CHK1-S protein is reported to be regulated over the cell
cycle and in tumours37. To test for cell cycle regulated splicing
inclusion of CHEK1 exon 3, we prepared RNAs from KG1 cell
populations enriched in different cell cycle stages prepared using
elutriation (Supplementary Fig. 5). When analysed by RT–PCR,
very similar patterns of CHEK1 exon 3 splicing inclusion were
observed in each of the cell populations even though they contain
different cell cycle profiles. We could detect high levels of both
CHEK1 splice isoforms in RNA purified from a small panel of
breast cancer tissues, although we did not see an enrichment of
either isoform in any particular tumour type at the RNA level
(Supplementary Fig. 6). Overall, the above data are most
consistent with Tra2a and Tra2b activity being essential for
expression of full-length CHK1 protein rather than inducing
expression of a shorter protein isoform of CHK1.

Tra2 protein depletion affects DNA damage and cell viability.
Although it is not as a direct target of CHK1 phosphorylation,
gH2AX has been used as a marker for the replication stress that
can be induced by depleted CHK1 levels38,39. Similar to previous
observations38, we observed greatly increased levels of the DNA
damage marker gH2AX following depletion of CHK1 protein by
siRNA, compared with cells treated with a negative control
siRNA (Fig. 8a). Increased gH2AX levels were also observed after
joint depletion of Tra2a and Tra2b proteins in MDA-MB-231
cells and in MCF7 cells (Fig. 8a,b). The relative increased levels of
gH2AX following CHEK1 or TRA2A/B siRNA treatment appear
proportional to the reduction in full-length CHK1 protein
expression observed by western blot.

Microscopy and MTT assays also indicated reduced cell
viability 120 hours after joint Tra2a and Tra2b depletion
(Fig. 8c,d). In contrast, single depletion of either Tra2a or Tra2b
had negligible effect on cell viability compared with mock
depleted cells. Similar results were obtained using two indepen-
dent sets of siRNAs targeted at different regions of the mRNAs.
This reduction in cell viability from joint removal of Tra2a and
Tra2b, compared with the negligible effects of removing either
protein alone, suggest that Tra2a and Tra2b are functionally
interchangeable for maintaining cell viability in MDA-MB-231
cells, as well as in splicing control.

Depletion of CHK1 also reduced cell viability in MDA-MB-231
cells (Fig. 8e). This suggests that depletion of full-length CHK1
protein would likely be sufficient by itself to contribute to the loss
of cell viability observed after joint Tra2a and Tra2b depletion.
To test if re-introduction of full-length CHK1 protein would be
sufficient to restore viability of joint Tra2a and Tra2b protein-
depleted cells, we made a stable cell line in the FLP-in HEK-293
cell background in which a full-length FLAG-tagged CHK1
protein was expressed under control of a tetracycline promoter.
Similar to the result obtained in MDA-MB-231 cells, joint
depletion of Tra2a and Tra2b reduced cell viability in this stable
HEK-293 cell line. However, although the full-length FLAG-
tagged CHK1 protein was efficiently induced by tetracycline, it
was not sufficient to rescue cell viability after joint Tra2 protein
depletion (Supplementary Figs 8 and 9). While we cannot rule out
that the tagged full-length CHK1 protein failed to rescue viability
of this cell line for another reason, this result is consistent with
multiple exons controlled by Tra2 proteins (including CHEK1
exon 3) being important for cell viability.

Finally, we monitored incorporation of the thymidine analogue
EdU using flow cytometry to determine whether joint Tra2
protein depletion affected cell proliferation of MDA-MB-231 cells
(Fig. 8f). After joint Tra2 protein depletion, we observed a
significant reduction in the proportion of EdU-positive cells 96 h

after siRNA transfection (an 8.4% reduction, P¼ 0.02), indicating
fewer cells had initiated DNA replication after joint Tra2 protein
depletion. A slight reduction in the proportion of EdU-positive
cells was observed after single CHK1 protein depletion, but this
was not statistically significant when compared with negative
control siRNA-treated cells. Joint Tra2 protein depletion also
caused an increase in the proportion of cells containing
abnormally shaped nuclei 96 h after siRNA transfection, con-
sistent with major biological defects (Fig. 8g).

Discussion
Here we find that only joint depletion of both Tra2a and Tra2b
proteins (and not single depletion of either protein alone) could
induce substantial splicing switches in endogenous Tra2b target
exons in MDA-MB-231 cells. This joint depletion strategy has
enabled us to derive the most comprehensive map of dual Tra2-
dependent target exons in any organism to date. Among the
jointly regulated exons identified here was a key exon in the
CHEK1 gene, which encodes a protein essential for monitoring
DNA damage and controlling cell cycle progression37,39. Exon 3
of the CHEK1 gene is 224 nucleotides long; hence, skipping of this
exon in the absence of Tra2 proteins would frameshift the reading
frame of the CHEK1 mRNA if a downstream translational
initiation site is not selected37. Joint depletion of both Tra2
proteins quantitatively switched CHEK1 pre-mRNA splicing,
reduced expression of full-length CHK1 protein, and led to an
increase in DNA damage as monitored by accumulation of
gH2AX. We also confirmed SMN2 exon 7 as a joint Tra2a/Tra2b
target exon. Joint control by Tra2a provides an explanation why
SMN2 exon 7 is a target for Tra2b in transfected cells, but not
appreciably affected in Tra2b single knockout mice15.

This strategy also reveals that Tra2 proteins are required for
splicing inclusion of some constitutively spliced exons. To the
best of our knowledge, Tra2 proteins have only previously been
described as alternative splicing factors26. Low levels of apparent
alternative splicing of constitutive exons might be ascribed to
error prone exon recognition by the spliceosome40. However, the
ANKRD1 and SMC4 exons are not annotated as alternatively
spliced in any tissue consistent with them being true constitutive
exons, yet also show high-amplitude splicing changes upon Tra2
protein depletion. A role in constitutive splicing brings the Tra2
proteins closer to the core SR group in described molecular
functions23. Consistent with this newly discovered role, Tra2b
protein is fairly evenly expressed across mouse tissues, so would
be available in most cells for splicing inclusion of constitutive
exons10,18. Although we only detected exons activated by Tra2
proteins in this study, exons have previously been described that
are repressed by Tra2 proteins29,41. Such repressed exons might
have either eluded our search criteria or occur less frequently.

Genes containing Tra2-dependent exons are enriched in
processes associated with chromosome biology. Although GO
annotations are known to be incomplete and can differ in
accuracy42, this pattern of functional enrichment observed in our
data is notably coherent. A potential association between the
Tra2-dependent exons and chromosome biology is additionally
supported by the connectivity of the BioGRID functional
interaction network. In addition to the regulated CHEK1
alternative splice, 6/17 of the strongest Tra2 protein-responsive
exons (showing 440 point PSI change after Tra2 depletion) were
also in genes involved in chromosome structure and epigenetic
regulation, including MSL3 (� 41 point PSI exon switch after
Tra2 depletion). MSL3 is the human ortholog43 of the Drosophila
melanogaster MSL3 gene, which regulates chromatin remodelling
during sex determination, and is under control of Sex Lethal (a
protein just upstream of Tra2 in the Drosophila sex determination
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pathway) in flies. The SMC4 gene (� 66 point PSI exon switch
after Tra2 depletion) encodes a protein important for DNA repair
and chromosome condensation, and also interacts with the CTCF
transcription factor that modifies chromatin structure44. The
ANKRD1 (� 73 point PSI exon switch after Tra2 depletion)
encodes a transcription factor, which is a negative regulator of
cardiac genes45. Also among the genes with highly Tra2 protein-
responsive exons was GLYR1 (� 41 point PSI exon switch after
Tra2 depletion), which is a cofactor for histone demethylation46,
and the zinc-finger protein ZCCHC9 (� 68 point PSI exon switch
after Tra2 depletion), which targets histone mRNAs for
degradation47. ZCCHC7 (� 72 point PSI exon switch after Tra2
depletion) and ZCCHC11 (� 46 point PSI exon switch after Tra2
depletion) encode zinc-finger proteins homologous to ZCCHC9,
but with roles in non-coding RNA metabolism47–49. The
MPHOSPH10 gene (� 42 point PSI exon switch after Tra2
depletion) encodes a protein involved in ribosomal RNA
processing in interphase, and is associated with chromosomes
during mitosis50. Other genes involved in chromatin modification
that are controlled by Tra2 proteins but did not fit into the most
responsive group include the NASP (NASP-T, � 12 point PSI
exon switch after Tra2 depletion) and ATRX genes (� 23 point
PSI exon switch after Tra2 depletion)18,51. Interestingly, the two
known Drosophila Tra2 splicing targets Doublesex and Fruitless
are both transcription factors12, and one of the major functions of
the Drosophila sex determination pathway is dosage
compensation via chromatin modification. Our data lend
further support to the association of particular splicing
regulators with the regulation of coherent cellular functions,
also described for NOVA, RBFox2, PTB and T-STAR4–7.

Our data indicate a high degree of functional redundancy
between Tra2a and Tra2b, and a powerful homeostatic repressive
feedback activity of Tra2b over Tra2a that buffers splicing
changes when just one of these proteins is missing. Although
splicing defects after single Tra2a and Tra2b depletion were
small, they were often individually statistically significant (for
example, in the ATRX gene). Such fine tuning of splicing profiles
by joint Tra2 protein concentration by splicing feedback control
might be important in whole organisms and at particular points
of development (for example, in brain or testis development).
Even individually, small splicing defects over many Tra2b-target
exons might cumulatively cause physiological defects. This might
explain why Tra2b-null mice are embryonic lethal despite
containing a Tra2a gene15,17,18. Similar asymmetric expression
patterns, in which a dominantly expressed splicing factor cross-
regulates other family member proteins, have been found in the
PTB family, where PTBP1 cross-regulates PTBP2 and PTBP3
(ref. 53). Comprehensive identification of PTBP1 targets similarly
required joint depletion of PTBP1 and PTBP2 (ref. 53) Future
studies of Tra2b-regulated splicing may also benefit by
considering expression levels of both Tra2 proteins, rather than
in the context of Tra2b expression alone.

Joint depletion of both Tra2 protein levels reduced cell viability
in MDA-MB-231 cells, likely at least in part because of the
requirement for productive splicing of the CHEK1 mRNA. CHK1
protein expression is critical to reduce replication stress in cancer
cells undergoing rapid proliferation driven by oncogenes includ-
ing RAS and MYC54,55. Our data thus suggest the Tra2 proteins
may represent novel targets to inhibit cancer cell growth.

Methods
Cell culture. MDA-MB-231 cells and MCF7 cells were maintained in DMEM (no
phenol red) plus 10% fetal bovine serum and 1% Penicillin Streptomycin.
HEK-293, HeLa and PC3 cells were maintained in DMEM plus 10% fetal bovine
serum. Cells lines were originally purchased from the American Type Culture
Collection and LGC Standards, Europe.

iCLIP. Triplicate iCLIP experiments were performed following the iCLIP proto-
col33. Briefly, MDA-MB-231 cells were irradiated with 400 mJ cm� 2 ultraviolet-C
light on ice, lysed and subject to partial RNase digestion. The crosslinked
Tra2b-RNA complexes were then immunoprecipitated using Protein A Dynabeads
(Invitrogen) and a rabbit polyclonal anti-Tra2b antibody (Abcam, ab31353). cDNA
libraries were prepared according to the published iCLIP protocol. High
throughput sequencing of cDNA libraries was performed using an Illumina GAIIx.

RNA-seq. RNA was extracted from cells using RNeasy Plus Mini Kit (Qiagen)
following manufacturer’s instructions and re-suspended in nuclease-free water. All
RNA samples were DNase treated using DNA-free kit (Invitrogen) and stored at
� 80 �C prior to RNA quality control check using 2100 Agilent Bioanalyser and
mRNA library prep using TruSeq mRNA library kit (Illumina). Pair-end sequen-
cing was done in total for six samples (three biological replicates of negative control
siRNA-treated cells and three biological replicates from TRA2A and TRA2B
siRNA-treated cells) using an Illumina HiSeq 2000.

Bioinformatics (iCLIP and RNA-seq analysis). iCLIP data analysis, crosslink site
identification and quantification, randomization of iCLIP positions and pentamer
enrichment analysis were performed according to published procedures33. Briefly,
we used the human genome annotation version hg19, and gene annotations from
Ensembl 59. Experiment barcode and random barcodes were registered and
removed from iCLIP reads. After trimming, we ignored reads shorter than 11
nucleotides. Remaining trimmed reads were then mapped using Bowtie56, allowing
two mismatches and accepting only reads with single hits. Crosslink sites were
initially identified as the first nucleotide upstream of the iCLIP tag, and then
filtered to determine statistically significant crosslink sites and those which
occurred in clusters within 15 nucleotides windows and with a significant iCLIP tag
count, compared with randomized positions, as described in Konig et al.56. For
RNA-seq analysis, the base quality of raw sequencing reads were checked with
FastQC (ref. 57) and refined with Seqtk (ref. 58) and Trim-galore (ref. 59). Reads
were mapped to the hg19 reference with Tophat2 (ref. 60) and matches analyzed
with Bedtools (ref. 61). Differentially expressed genes and exon usage were
determined with DESeq (ref. 62) and DEXSeq (ref. 63) respecitvely.

siRNA transfection. Efficient knockdown of endogenous Tra2a, Tra2b and CHK1
proteins were achieved by transfecting cells with Silencer Select Pre-designed
siRNAs (Ambion), targeting TRA2A mRNA (Ambion IDs: s26664 and s26665),
TRA2B mRNA (Ambion IDs: s12749 and s12751) or CHEK1 mRNA (Ambion ID:
s503) respectively, with siPORT NeoFX Transfection Agent (Ambion). Control
cells were transfected with a negative control siRNA (Ambion Cat#: 4390843).
MDA-MB-231 cells grown in 100mm tissue culture dishes were transfected with
either 24ml of 10 mM negative control siRNA (control), 12 ml of 10mM siRNA
targeting TRA2A, TRA2B or CHEK1 (single Tra2a, Tra2b or CHK1 knockdown) or
12 ml of 10 mM siRNA targeting TRA2A and 12ml of 10mM siRNA targeting TRA2B
(joint Tra2a and Tra2b knockdown). Cells were incubated for 72 h post siRNA
transfection, before RNA extraction or western blotting.

Splicing assays: RNA extraction, RT–PCR and PCR. RNA was extracted using
standard Trizol RNA extraction. cDNA was synthesized from 500 ng total RNA in
a 10ml reaction, using Superscript VILO cDNA synthesis kit (Invitrogen) following
manufacturer’s instructions. Splicing profiles were monitored by PCR using
primers in flanking exons. For each PCR, 1 ml diluted cDNA (1/8) was used as
template in a 10ml PCR reaction using Phusion High-Fidelity PCR Kit (NEB, UK)
following manufacturer’s instructions. Splicing profiles were monitored and
quantified using the Qiaxcel capillary electrophoresis system (Qiagen) and PSI was
calculated as described previously18. All primers used for splicing assays are
provided in Supplementary Data 3.

Quantitative PCR. Relative gene expression was determined by quantitative real-
time PCR using the SYBR Green PCR Master Mix kit (Applied Biosystems) and an
Applied Biosystems 7900HT Fast Real-Time PCR Machine. cDNA was generated
from equal quantities of total RNA for each sample using Superscript VILO cDNA
synthesis kit (Invitrogen) following manufacturer’s instructions. Gene expression
was calculated relative to three housekeeping genes ACTB, GAPDH and TUBB. Ct

values for each sample were calculated using SDS 2.4 software (Applied Biosys-
tems) and relative mRNA expression was calculated using the 2�DDCt method.

Calculation of Tra2b binding site density. Tra2b binding site density was cal-
culated as the percentage of nucleotides within an exon that correspond to the top
10 kmers identified from the Tra2b iCLIP experiments (Supplementary Fig. 2b).

Detection of proteins using western blotting. Endogenous proteins were
detected by western blot analysis using the following primary antibodies and
dilutions: Tra2a (Novus Biologicals, H00029896-B01P;1:500 dilution), Tra2b
(Abcam, ab31353;1:2,000 dilution), CHEK1 (Proteintech, 10362-1-AP;1:250
dilution), Histone H2AX (Santa Cruz Biotechnology, sc54-606;1:500 dilution),
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gH2AX (Ser 139) (Santa Cruz Biotechnology, sc-101696;1:500 dilution), FLAG
(Sigma-Aldrich, F3040;1:2,000 dilution), b-Actin (Sigma-Aldrich, A5441,1:2,000
dilution) and a-Tubulin (Sigma-Aldrich, T5168;1:2,000 dilution).

ANKRD1 and CHEK1 minigene construction and mutagenesis. The ANKRD1
constitutive exon and B200 nucleotides of flanking intronic region was amplified
from human genomic DNA using the cloning primers ANKRD1 F (50-AAAA
AAAAAGAATTCAAAATCTAAGACTTGCTTATGGCATT-30) and ANKRD1 R
(50AAAAAAAAAGAATTCAGCATGAGAGTTACCGTGAGC-30). The PCR
products were digested with BamH1 restriction enzyme and cloned into the pXJ41
vector64 using the Mfe1 site midway through the 757 nucleotide rabbit b-globin
intron 2. Tra2b binding site mutations were made using site directed mutagenesis
with the following primers; ANKRD1 M1F (50- AGAACACATATCAAAGCTT
GCACATTTATACGACCTTGAAA-30), ANKRD1 M1R (50-CAAGGTCGTATAA
ATGTGCAAGCTTTGATATGTGTTCTAG-30), ANKRD1 M2F (50-ATCATT
CAACTGCAGCAACGGCAACAATACAGGCACACTAAAG-30) and ANKRD1
M2R (50-GAACTTTAGTGTGCCTGTATTGTTGCCGTTGCTGCAGTTGAA
TG-30). The CHEK1 alternative exon and approximately 250 nucleotides of
flanking intronic region was synthesised in vitro and similarly cloned into the
pXJ41 vector. A mutated version that disrupted Tra2b binding sites was also
synthesised (sequence provided in Fig. 7c) and cloned into the pXJ41 vector.
Analysis of splicing patterns of mRNAs transcribed from minigenes was carried
out in HEK-293 cells as previously described18,24, using primers within the
b-globin exons of pXJ41; PXJRTF (50-GCTCCGGATCGATCCTGAGAACT-30)
and PXJB (50-GCTGCAATAAACAAGTTCTGCT-30).

EMSAs. Gel shift experiments18,65 were performed using full-length Tra2b protein
and in vitro-translated RNA probes made from constructs containing amplified
regions of the human CHEK1 gene, cloned into the pBluescript vector. Three
regions of the human CHEK1 gene were amplified using the following primers:
CHEK1 intronic F (50-AAAAAAAAAGGTACCTGTGTACCTCTCCTTCACTA
CC-30), CHEK1 intronic R (50-AAAAAAAAAGAATTCCTGTCCTAAGCTCCT
ATGGGG-30), CHEK1 exon region A F (50-AAAAAAAAAGGTACCgttcaacttgc
tgtgaatagagt-30), CHEK1 exon region A R (50-AAAAAAAAAGAATTCggcacg
CTTCAtatctacaATCT-30), CHEK1 exon region B F (50-AAAAAAAAAGGTACC
agtaaaattctatggtcacagga-30) and CHEK1 exon region B R (50-AAAAAAAAAGAA
TTCctccactacagtactccagaaat-30).

GO and functional network analysis. GO66 enrichment analysis was carried out
using the Bioconductor GOstats package version 2.24.0refs 67, 68. Enrichments of
GO biological process terms were calculated using the conditional hypergeometric
test with a significance cut-off of 0.001 and using a background of genes that are
normally expressed in MDA-MB-231 cells. Annotations were taken from the
Bioconductor Homo sapiens annotation package org.Hs.eg.db version 2.8.0ref. 69.
The analysis was run in the open source statistical package R version 3.0.1ref. 70.

Interaction data for Homo sapiens was retrieved from the BioGRID database
(version 110). These data were integrated into a network in which nodes
represented genes or gene products, and edges represented any type of BioGRID
interaction between the nodes. The network was visualised using the Cytoscape
visualization platform71, and was coloured based on annotations to top five enriched
GO biological processes (as downloaded from QuickGO71). Where a protein was
annotated to more than one term, the most specific annotation was chosen.

MTT assay. MTT assays were performed using MTT Cell Proliferation Assay Kit
(Cayman Chemical), following manufacturer’s instructions. An siRNA transfection
mix was added to a suspension of B2� 105 MDA-MB-231 cells in 10ml media.
The siRNA/cell suspension was gently mixed and a 100ml aliquot was added per
well to a 96-well plate. Absorbance from the MTT assay was measured at 24, 48, 72,
96 and 120 h after siRNA transfection/seeding of cells. Relative density of cells was
also compared 120 h after seeding cells by microscopy.

Fluorescence-activated cell sorting analysis of EdU-positive cells. MDA-MB-
231 cells were incubated with 10 mM EdU for 4 h, 96 h after siRNA transfection.
Cell fixation, permeabilization and EdU detection was performed using the
Click-iT EdU Flow Cytometry Assay Kit (Life Technologies) following the man-
ufacturer’s instructions. Data were collected and analysed using a BD LSR II flow
cytometer using 488 nm excitation and a 520/20 band-pass for detection of EdU
Alexa Fluor488 azide and 355 nm excitation and a 450/50 band-pass for detection
of 4’,6-diamidino-2-phenylindole. Experiments were performed with biological
triplicate samples and 30,000 cells were analysed per sample. A no-EdU control
sample was used to inform our gating strategy to calculate the proportion of EdU-
positive cells.

Analysis of nuclear morphology. To investigate nuclear morphology, cells were
fixed with 4% paraformaldehyde followed by nuclear staining with 4’,6-diamidino-
2-phenylindole, 96 h after siRNA transfection (siRNA transfection as described
above).

Elutriation and cell cycle evaluation. Elutriation: Cells were size fractionated by
centrifugal elutriation, using flow rates of 10, 13, 17, 20, 24 and 28mlmin� 1

(ref. 72). Cell cycle evaluation: Cell cycle phase enrichment of cells was assessed
using immunofluorescence staining for CENPF (late S, G2, G2/M)73 and phospho-
histone H3S10 (G2/M, M)74. Asynchronous and elutriated KG1 cells were
suspended in PBS, spotted onto poly-lysine-coated slides and processed for
immunofluorescence. Images were captured and cells were scored for CENPF and
phospho-H3S10 staining.

Generation of tetracycline-inducible HEK-293 cells. Full-length CHK1-FLAG
cDNA was amplified from the pcDNA4-Chk1-Flag plasmid (Addgene plasmid
#22894) using the primers CHEK1 FLAG F (50-AAAAAAAAAGCGGCCGC
atggcagtgccctttgtggaagac-30) and CHEK1 FLAG R (50-AAAAAAAAAGTCGAC
tcatgtggcaggaagccaaatcttc-30) and cloned into the Flp-In expression vector
(pCDNA5). To generate an inducible cell line, the CHK1-FLAG-pCDNA5 vector
was cotransfected with the Flp recombinase plasmid (pOG44) into Flp-In HEK-293
cells and selected for using treatment with Hygromycin B. Following Hygromycin
B selection, CHK1-FLAG expression was induced by the addition of tetracycline to
promote expression CHK1-FLAG expression via a tetracycline-inducible promoter.
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