69 research outputs found
A SOM-based analysis of the drivers of the 2015â2017 Western Cape drought in South Africa
The multi-year (2015â2017) drought in the South West of the Western Cape (SWC) caused a severe water shortage in the summer of 2017â2018, with damaging impacts on the local and regional economy, and Cape Town being in the news one of the first major cities to potentially run out of water. Here, we assess the links between the rainfall deficits during the drought and (a) large scale circulation patterns, (b) moisture transport, and (c) convective available potential energy (CAPE). We used self-organising maps (SOM) analysis to classify daily ERA-interim 850 hPa geopotential height for the period 1979â2017 (MarchâOctober) into synoptic types. This allowed us to identify the dominant synoptic states over Southern Africa that influence the local climate in the area affected by the drought. The results show that (a) the frequency of nodes with rain-bearing circulation types decreased during the drought; (b) the amount of rain falling on days that did have rain-bearing circulation types was reduced, especially in the shoulder seasons (MarchâMay and AugustâOctober); (c) the rainfall reduction was also associated with anomalously low moisture transport, and convective energy (CAPE), over SWC. These results add to the existing knowledge of drivers of the Cape Town drought, providing an understanding of underlying synoptic processes
A mathematical framework for critical transitions: normal forms, variance and applications
Critical transitions occur in a wide variety of applications including
mathematical biology, climate change, human physiology and economics. Therefore
it is highly desirable to find early-warning signs. We show that it is possible
to classify critical transitions by using bifurcation theory and normal forms
in the singular limit. Based on this elementary classification, we analyze
stochastic fluctuations and calculate scaling laws of the variance of
stochastic sample paths near critical transitions for fast subsystem
bifurcations up to codimension two. The theory is applied to several models:
the Stommel-Cessi box model for the thermohaline circulation from geoscience,
an epidemic-spreading model on an adaptive network, an activator-inhibitor
switch from systems biology, a predator-prey system from ecology and to the
Euler buckling problem from classical mechanics. For the Stommel-Cessi model we
compare different detrending techniques to calculate early-warning signs. In
the epidemics model we show that link densities could be better variables for
prediction than population densities. The activator-inhibitor switch
demonstrates effects in three time-scale systems and points out that excitable
cells and molecular units have information for subthreshold prediction. In the
predator-prey model explosive population growth near a codimension two
bifurcation is investigated and we show that early-warnings from normal forms
can be misleading in this context. In the biomechanical model we demonstrate
that early-warning signs for buckling depend crucially on the control strategy
near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
Interatomic potentials for atomistic simulations of the Ti-Al system
Semi-empirical interatomic potentials have been developed for Al, alpha-Ti,
and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large
database of experimental as well as ab-initio data. The ab-initio calculations
were performed by the linear augmented plane wave (LAPW) method within the
density functional theory to obtain the equations of state for a number of
crystal structures of the Ti-Al system. Some of the calculated LAPW energies
were used for fitting the potentials while others for examining their quality.
The potentials correctly predict the equilibrium crystal structures of the
phases and accurately reproduce their basic lattice properties. The potentials
are applied to calculate the energies of point defects, surfaces, planar faults
in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al
system, the proposed potentials provide reasonable description of the lattice
thermal expansion, demonstrating their usefulness in the molecular dynamics or
Monte Carlo studies at high temperatures. The energy along the tetragonal
deformation path (Bain transformation) in gamma-TiAl calculated with the EAM
potential is in a fairly good agreement with LAPW calculations. Equilibrium
point defect concentrations in gamma-TiAl are studied using the EAM potential.
It is found that antisite defects strongly dominate over vacancies at all
compositions around stoichiometry, indicating that gamm-TiAl is an antisite
disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, OâMalley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. âMacrobeâ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes â the dominant life form on the planet, both now and throughout evolutionary history â will transform some of the philosophy of biologyâs standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology â including biofilm formation, chemotaxis, quorum sensing and gene transfer â that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
A preliminary study of the transport of air from Africa and Australia to New Zealand
Kinematic trajectory modelling is used in a preliminary examination of inter-regional
transport of air within the Southern Hemisphere. In particular, the westerly zonal
transport of air in the lower troposphere from southern Africa and Australia to New
Zealand is determined for January and July, using both forward and backward trajectories
originating or ending up in the 850-800 hPa layer respectively. Mean transport plumes
are derived from swarms of individual trajectories, and the results show that in winter around 22% of air originating over the central interior of South Africa reaches the central Tasman Sea south of New Zealand. In summer the amount is insignificant owing to seasonal changes in the position of major circulation features. In contrast, both
summer and winter low-level air transport from southeastern and southwestern Australia
and adjacent oceans to New Zealand is substantial, with 83% of all low-level air parcels from the Sydney area in summer passing over central New Zealand 5 days later. In winter the transport plume passes over the northern part of the North Island within 3 days. Back trajectories show that in some seasons two distinct paths are followed by air arriving at Christchurch and Auckland, from the west-northwest and southwest. Analysis of the vertical structure of the transport plumes arriving in New Zealand shows that the westerly air reaching Auckland in the 850-800 hPa layer does so in a subsiding airstream throughout the year, whereas that arriving in the same layer over Christchurch experiences only minor subsidence en route from Australia and the ocean to the south. This descending motion is related to the dominance of anticyclomc circulation, particularly over the northern section of the New Zealand region
- âŠ