3,452 research outputs found

    Postcard: Old Pioneer, Western Kansas Soddy

    Get PDF
    This black and white photographic postcard features a sod house. An ax and two guns are propped against the building next to the door. Fencing is in the background. Printed text is at the bottom of the card. Handwriting is on the back of the card.https://scholars.fhsu.edu/tj_postcards/2203/thumbnail.jp

    Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network

    Get PDF
    Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detection, the scientific promise of these instruments relies on the effectiveness of our physical parameter estimation capabilities. The majority of this effort has been towards the detection and characterization of gravitational waves from compact binary coalescence, e.g. the coalescence of binary neutron stars. While several previous studies have investigated the accuracy of parameter estimation with advanced detectors, the majority have relied on approximation techniques such as the Fisher Matrix. Here we report the statistical uncertainties that will be achievable for optimal detection candidates (SNR = 20) using the full parameter estimation machinery developed by the LIGO/Virgo Collaboration via Markov-Chain Monte Carlo methods. We find the recovery of the individual masses to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg^2 (13.5 deg^2) on the sky. This region is improved to 2.3 deg^2 (6 deg^2) with the addition of the proposed LIGO India detector to the network. We also report the average uncertainties on the luminosity distances and orbital inclinations of ideal detection candidates that can be achieved by different network configurations.Comment: Second version: 15 pages, 9 figures, accepted in Ap

    Direct lateral maneuvers in hawkmoths

    Get PDF
    ABSTRACTWe used videography to investigate direct lateral maneuvers, i.e. ‘sideslips’, of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta.Summary: We show that hawkmoths fly sideways by rolling in the direction of movement, adding a left- or right-ward component to their net lift vector. The underlying roll maneuvers are produced from a suite of asymmetric wing kinematic changes and are heavily damped

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. I. Flight Kinematics

    Get PDF
    Hummingbirds are nature’s masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the ‘helicopter model’ that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres

    Observation of Ferromagnetic Clusters in Bi0.125Ca0.875MnO3

    Full text link
    The electron doped manganite system, Bi0.125Ca0.875MnO3, exhibits large bulk magnetization of unknown origin. To select amongst possible magnetic ordering models, we have conducted temperature and magnetic field dependent small-angle neutron scattering measurements. Nontrivial spin structure has been revealed. Ferromagnetic spin clusters form in the antiferromagnetic background when temperature is decreased to Tc~108K. With a further reduction in temperature or the application of external magnetic field, the clusters begin to form in larger numbers, which gives an overall enhancement of magnetization below Tc.Comment: 14 pages, 6 figue

    Characterizing web pornography consumption from passive measurements

    Get PDF
    Web pornography represents a large fraction of the Internet traffic, with thousands of websites and millions of users. Studying web pornography consumption allows understanding human behaviors and it is crucial for medical and psychological research. However, given the lack of public data, these works typically build on surveys, limited by different factors, e.g. unreliable answers that volunteers may (involuntarily) provide. In this work, we collect anonymized accesses to pornography websites using HTTP-level passive traces. Our dataset includes about 15 00015\,000 broadband subscribers over a period of 3 years. We use it to provide quantitative information about the interactions of users with pornographic websites, focusing on time and frequency of use, habits, and trends. We distribute our anonymized dataset to the community to ease reproducibility and allow further studies.Comment: Passive and Active Measurements Conference 2019 (PAM 2019). 14 pages, 7 figure

    Analysis of segmentation ontology reveals the similarities and differences in connectivity onto L2/3 neurons in mouse V1

    Get PDF
    Quantitatively comparing brain-wide connectivity of different types of neuron is of vital importance in understanding the function of the mammalian cortex. Here we have designed an analytical approach to examine and compare datasets from hierarchical segmentation ontologies, and applied it to long-range presynaptic connectivity onto excitatory and inhibitory neurons, mainly located in layer 2/3 (L2/3), of mouse primary visual cortex (V1). We find that the origins of long-range connections onto these two general cell classes-as well as their proportions-are quite similar, in contrast to the inputs on to a cell type in L6. These anatomical data suggest that distal inputs received by the general excitatory and inhibitory classes of neuron in L2/3 overlap considerably
    • …
    corecore