43 research outputs found

    Tetrazole as a Replacement of the Electrophilic Group in Characteristic Prolyl Oligopeptidase Inhibitors

    Get PDF
    4-Phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines were studied as prolyl oligopeptidase inhibitors. The compounds were more potent than expected from the assumption that the tetrazole would also here be a bioisostere of the carboxylic acid group and the corresponding carboxylic acids are at their best only weak inhibitors. The aminoacyl groups L-prolyl and L-alanyl gave potent inhibitors with IC50 values of 12 and 129 nM, respectively. This was in line with typical prolyl oligopeptidase inhibitors; however, we did observe a difference with N-methyl-L-alanyl, which gave potent inhibitors in typical prolyl oligopeptidase inhibitors but not in our novel compound series. Furthermore, all studied 4-phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines decreased alpha-synuclein dimerization at the concentration of 10 mu M, also when they were only weak inhibitors of the proteolytic activity of the enzyme with an IC50 value of 205 mu M. Molecular docking studies revealed that the compounds are likely to bind differently to the enzyme compared to typical prolyl oligopeptidase inhibitors represented in this study by 4-phenylbutanoyl-aminoacyl-2(S)-cyanopyrrolidines.Peer reviewe

    Patient with multiple acyl-CoA dehydrogenation deficiency disease and FLAD1 mutations benefits from riboflavin therapy

    Get PDF
    Multiple acyl-CoA dehydrogenation deficiency is genetically heterogenous metabolic disease with mutations in genes involved in electron transfer to the mitochondrial respiratory chain. Disease symptoms vary from severe neonatal form to late-onset presentation with metabolic acidosis, lethargy, vomiting, muscle pain and weakness. Riboflavin therapy has been shown to ameliorate diseases symptoms in some of these patients. Recently, mutations in FAD synthase have been described to cause multiple acyl-CoA dehydrogenation deficiency. We describe here the effect of riboflavin supplementation therapy in a previously reported adult patient with multiple acyl-CoA dehydrogenation deficiency having compound heterozygous gene variations in FLAD1 (MIM: 610595) encoding FAD synthase. We present thorough clinical history including laboratory investigations, muscle MRI, muscle biopsy and spiroergometric analyses comprising of a follow-up of 20 years. Our data suggest that patients with adult-onset multiple acyl-CoA dehydrogenation deficiency with FLAD1 gene mutations also benefit from long-term riboflavin therapy. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Clinical utility of exercise training in chronic systolic heart failure

    No full text
    The volume of literature attesting to the clinical benefits of exercise training in patients with stable chronic heart failure (CHF) is substantial. Training can improve symptoms and exercise capacity, as well as reducing morbidity, mortality, and rates of emergency hospitalization. These benefits are apparent in all patients with stable CHF, irrespective of age or sex, or the etiology or severity of heart failure. Training regimens for patients with stable, systolic CHF should form part of a comprehensive heart-failure support effort and are best delivered using supervised in-hospital exercise combined with some training at home or in a group setting in community centers. In this Review, the modes and intensity of exercise training, selection of patients, duration of training effects, and other clinical guidance for using this treatment option are discussed
    corecore