47 research outputs found

    High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator

    Get PDF
    We describe a tunable broadband mid-IR laser source based on difference-frequency mixing of a 100 MHz femto second Yb:fiber laser oscillator and a Raman-shifted soliton generated with the same laser. The resulting light is tunable over 3.0 μm to 4.4 μm, with a FWHM bandwidth of 170 nm and maximum average output power up to 125 mW. The noise and coherence properties of this source are also investigated and described

    Phase and micromotion of Bose-Einstein condensates in a time-averaged ring trap

    Get PDF
    Rapidly scanning magnetic and optical dipole traps have been widely utilised to form time-averaged potentials for ultracold quantum gas experiments. Here we theoretically and experimentally characterise the dynamic properties of Bose-Einstein condensates in ring-shaped potentials that are formed by scanning an optical dipole beam in a circular trajectory. We find that unidirectional scanning leads to a non-trivial phase profile of the condensate that can be approximated analytically using the concept of phase imprinting. While the phase profile is not accessible through in-trap imaging, time-of-flight expansion manifests clear density signatures of an in-trap phase step in the condensate, coincident with the instantaneous position of the scanning beam. The phase step remains significant even when scanning the beam at frequencies two orders of magnitude larger than the characteristic frequency of the trap. We map out the phase and density properties of the condensate in the scanning trap, both experimentally and using numerical simulations, and find excellent agreement. Furthermore, we demonstrate that bidirectional scanning eliminated the phase gradient, rendering the system more suitable for coherent matter wave interferometry.Comment: 10 pages, 7 figure

    Scaling dynamics of the ultracold Bose gas

    Full text link
    The large-scale expansion dynamics of quantum gases is a central tool for ultracold gas experiments and poses a significant challenge for theory. In this work we provide an exact reformulation of the Gross-Pitaevskii equation for the ultracold Bose gas in a coordinate frame that adaptively scales with the system size during evolution, enabling simulations of long evolution times during expansion or similar large-scale manipulation. Our approach makes no hydrodynamic approximations, is not restricted to a scaling ansatz, harmonic potentials, or energy eigenstates, and can be generalized readily to non-contact interactions via the appropriate stress tensor of the quantum fluid. As applications, we simulate the expansion of the ideal gas, a cigar-shaped condensate in the Thomas-Fermi regime, and a linear superposition of counter propagating Gaussian wavepackets. We recover known scaling for the ideal gas and Thomas-Fermi regimes, and identify a linear regime of aspect-ratio preserving free expansion; analysis of the scaling dynamics equations shows that an exact, aspect-ratio invariant, free expansion does not exist for nonlinear evolution. Our treatment enables exploration of nonlinear effects in matter-wave dynamics over large scale-changing evolution.Comment: 12 pages, 3 figures, 2 appendice

    Quantitative acoustic models for superfluid circuits

    Full text link
    We experimentally realize a highly tunable superfluid oscillator circuit in a quantum gas of ultracold atoms and develop and verify a simple lumped-element description of this circuit. At low oscillator currents, we demonstrate that the circuit is accurately described as a Helmholtz resonator, a fundamental element of acoustic circuits. At larger currents, the breakdown of the Helmholtz regime is heralded by a turbulent shedding of vortices and density waves. Although a simple phase-slip model offers qualitative insights into the circuit's resistive behavior, our results indicate deviations from the phase-slip model. A full understanding of the dissipation in superfluid circuits will thus require the development of empirical models of the turbulent dynamics in this system, as have been developed for classical acoustic systems.Comment: 12 pages, 9 figure

    Melting of a vortex matter Wigner crystal

    Full text link
    The two-dimensional One-Component Plasma (OCP) is a foundational model of the statistical mechanics of interacting particles, describing phenomena common to astrophysics, turbulence, and the Fractional Quantum Hall Effect (FQHE). Despite an extensive literature, the phase diagram of the 2D OCP is still a subject of some controversy. Here we develop a "vortex matter" simulator to realize the logarithmic-interaction OCP experimentally by exploiting the topological character of quantized vortices in a thin superfluid layer. Precision optical-tweezer control of the location of quantized vortices enables direct preparation of the OCP ground state with or without defects, and heating from acoustic excitations allows the observation of the melting transition from the solid Wigner crystal through the liquid phase. We present novel theoretical analysis that is in quantitative agreement with experimental observations, and demonstrates how equilibrium states are achieved through the system dynamics. This allows a precise measurement of the superfluid-thermal cloud mutual friction and heating coefficients. This platform provides a route towards solving a number of open problems in systems with long-range interactions. At equilibrium, it could distinguish between the competing scenarios of grain boundary melting and KTHNY theory. Dynamical simulators could test the existence of predicted edge-wave solitons which form a hydrodynamic analogue of topological edge states in the FQHE.Comment: 9 pages, 9 figure

    Optimizing persistent currents in a ring-shaped Bose-Einstein condensate using machine learning

    Full text link
    We demonstrate a method for generating persistent currents in Bose-Einstein condensates by using a Gaussian process learner to experimentally control the stirring of the superfluid. The learner optimizes four different outcomes of the stirring process: (O.I) targeting and (O.II) maximization of the persistent current winding number; and (O.III) targeting and (O.IV) maximization with time constraints. The learner optimizations are determined based on the achieved winding number and the number of spurious vortices introduced by stirring. We find that the learner is successful in optimizing the stirring protocols, although the optimal stirring profiles vary significantly depending strongly on the choice of cost function and scenario. These results suggest that stirring is robust and persistent currents can be reliably generated through a variety of stirring approaches.Comment: 11 pages, 8 figures, 1 tabl

    High-power broadband laser source tunable from 3.0 um to 4.4 um based on a femtosecond Yb:fiber oscillator

    Get PDF
    We describe a tunable broadband mid-infrared laser source based on difference-frequency mixing of a 100 MHz femtosecond Yb:fiber laser oscillator and a Raman-shifted soliton generated with the same laser. The resulting light is tunable over 3.0 um to 4.4 um, with a FWHM bandwidth of 170 nm and maximum average output power up to 125 mW. The noise and coherence properties of this source are also investigated and described.Comment: To appear in Optics Letter

    Vortex Formation by Interference of Multiple Trapped Bose-Einstein Condensates

    Get PDF
    We report observations of vortex formation as a result of merging together multiple 87^{87}Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a trapping potential is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated condensates. The three condensates then merge together into one BEC, either by removal of the barrier, or during the final stages of evaporative cooling if the barrier energy is low enough; both processes can naturally produce vortices within the trapped BEC. We interpret the vortex formation mechanism as originating in interference between the initially independent condensates, with indeterminate relative phases between the three initial condensates and the condensate merging rate playing critical roles in the probability of observing vortices in the final, single BEC.Comment: 5 pages, 3 figure

    Universal expansion of vortex clusters in a dissipative two-dimensional superfluid

    Full text link
    A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters with thermal friction, and present an analytic solution that uncovers a new universality class in the out-of-equilibrium dynamics of dissipative superfluids. We find that the long-time dynamics of the vorticity distribution is an expanding Rankine vortex (i.e.~top-hat distribution) independent of initial conditions. This highlights a fundamentally different decay process to classical fluids, where the Rankine vortex is forbidden by viscous diffusion. Numerical simulations of large ensembles of point vortices confirm the universal expansion dynamics, and further reveal the emergence of a frustrated lattice structure marked by strong correlations. We present experimental results in a quasi-two-dimensional Bose-Einstein condensate that are in excellent agreement with the vortex fluid theory predictions, demonstrating that the signatures of vortex fluid theory can be observed with as few as N∼11N\sim 11 vortices. Our theoretical, numerical, and experimental results establish the validity of the vortex fluid theory for superfluid systems.Comment: V1: 6 pages, 3 figures in main text. 5 pages, 5 figures in supplemental material. V2: Updated in response to reviewer comments: Improved introduction and discussion, additional simulation data provided in supplemental material
    corecore