37 research outputs found

    Natural climate solutions for the United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517

    Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis

    Get PDF
    The deposited item is a book chapter and is part of the series "Centromeres and Kinetochores" published by the publisher Springer Verlag. The deposited book chapter is a post-print version and has been submitted to peer reviewing. There is no public supplementary material available for this publication. This publication hasn't any creative commons license associated.Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.There are no funders and sponsors indicated explicitly in the document.info:eu-repo/semantics/publishedVersio

    Seed sowing shifts native–exotic richness relationships in favor of natives during restoration

    No full text
    Abstract A central goal of ecological restoration is to promote diverse ecosystems dominated by native species, but restorations are often plagued by exotic species. A better understanding of factors underlying positive correlations between native and exotic species richness, a pattern that is nearly ubiquitous at large scales in plant communities, may help managers modify these correlations to favor native plant species during restoration. Across 29 tallgrass prairie sites restored through seed sowing onto former agricultural lands, we examined whether the relationship between native and exotic richness is (1) altered by management, such as seed additions and prescribed fire; (2) controlled instead by environmental conditions and successional processes; or (3) altered by management in certain environments and not in others. As is commonly found, native and exotic richness were positively correlated at large scales (i.e., across sites) in this study. Management actions explained much of the remaining variation in native richness, while environmental conditions explained very little. Sites sown with more species at higher seeding rates, especially forb species, had higher native richness than predicted by the native–exotic richness relationship. In contrast, native richness was lower in older restorations than predicted by the native–exotic richness relationship, because native richness, and not exotic richness, declined with restoration age. We show that management actions such as seed sowing can modify the native–exotic richness relationship to favor native species during restoration. The development of management actions that mitigate native species richness declines over time will further benefit native species restoration

    Assessing the Ecological Need for Prescribed Fire in Michigan Using GIS-Based Multicriteria Decision Analysis: Igniting Fire Gaps

    No full text
    In fire-suppressed landscapes, managers make difficult decisions about devoting limited resources for prescribed fire. Using GIS-based multicriteria decision analysis, we developed a model assessing ecological need for prescribed fire on Michigan’s state-owned lands, ranging from fire-dependent prairies, savannas, barrens, and oak and pine forests to fire-intolerant mesic forests, and including a diversity of wetlands. The model integrates fine-scale field-collected and broad-scale GIS data to identify where prescribed fire needs are greatest. We describe the model’s development and architecture, present results at multiple scales, introduce the concepts of “fire gaps” and “fire sink”, and rate the fire needs of more than 1.8 million hectares into one of six fire needs classes. Statewide, fire needs increase with decreasing latitude. The highest and lowest needs occur in southwestern Michigan and the Upper Peninsula, respectively, but actual fire application rates for these regions are inverted. The model suggests burn rates should be increased 2.2 to 13.4 times to burn all lands with greater than high fire needs. The model identifies regional patterns; highlights specific sites; and illustrates the disparity of fire needs and fire application. The modeling framework is broadly applicable to other geographies and efforts to prioritize stewardship of biodiversity at multiple scales

    Context-dependent architecture of brain state dynamics is explained by white matter connectivity and theories of network control

    No full text
    A diverse white matter network and finely tuned neuronal membrane properties allow the brain to transition seamlessly between cognitive states. However, it remains unclear how static structural connections guide the temporal progression of large-scale brain activity patterns in different cogni- tive states. Here, we deploy an unsupervised machine learning algorithm to define brain states as time point level activity patterns from functional magnetic resonance imaging data acquired dur- ing passive visual fixation (rest) and an n-back working memory task. We find that brain states are composed of interdigitated functional networks and exhibit context-dependent dynamics. Using diffusion-weighted imaging acquired from the same subjects, we show that structural connectivity constrains the temporal progression of brain states. We also combine tools from network control theory with geometrically conservative null models to demonstrate that brains are wired to sup- port states of high activity in default mode areas, while requiring relatively low energy. Finally, we show that brain state dynamics change throughout development and explain working mem- ory performance. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics
    corecore