10,384 research outputs found

    Carfentrazone-ethyl Pond Dissipation and Efficacy on Floating Plants

    Get PDF
    Carfentrazone-ethyl (CE) is a reduced risk herbicide that is currently being evaluated for the control of aquatic weeds. Greenhouse trials were conducted to determine efficacy of CE on water hyacinth ( Eichhornia crassipes (Mart.) Solms- Laub.), water lettuce ( Pistia stratiotes L.), salvinia ( Salvinia minima Baker) and landoltia (Landoltia punctata (G. Mey.) Les & D. J. Crawford ) . CE controlled water lettuce, water hyacinth and salvinia at rates less than the maximum proposed use rate of 224 g ha -1 . Water lettuce was the most susceptible to CE with an EC 90 of 26.9 and 33.0 g ha -1 in two separate trials. Water hyacinth EC 90 values were calculated to be 86.2 to 116.3 g ha -1 , and salvinia had a similar susceptibility to water hyacinth with an EC 90 of 79.1 g ha -1 . Landoltia was not adequately controlled at the rates evaluated. In addition, CE was applied to one-half of a 0.08 ha pond located in North Central, Florida to determine dissipation rates in water and hydrosoil when applied at an equivalent rate of 224 g ha -1 . The half-life of CE plus the primary metabolite, CE-chloropropionic acid, was calculated to be 83.0 h from the whole pond, and no residues were detected in water above the limit of quantification (5 ÎŒg L -1 ) 168 h after treatment. CE dissipated rapidly from the water column, did not occur in the sediment above the levels of quantification, and in greenhouse studies effectively controlled three species of aquatic weeds at relatively low rates.(PDF contains 6 pages.

    Torque control system

    Get PDF
    System stabilizes aximuth of gondolas which are carried by high-altitude balloons as platforms for tracking telescopes. When telescopes must be constantly aimed at specific targets, control system stabilizes gondola to within 5 arc-seconds

    Earthshine as an Illumination Source at the Moon

    Full text link
    Earthshine is the dominant source of natural illumination on the surface of the Moon during lunar night, and at locations within permanently shadowed regions that never receive direct sunlight. As such, earthshine may enable the exploration of areas of the Moon that are hidden from solar illumination. The heat flux from earthshine may also influence the transport and cold trapping of volatiles present in the very coldest areas. In this study, Earth's spectral radiance at the Moon is examined using a suite of Earth spectral models created using the Virtual Planetary Laboratory (VPL) three dimensional modeling capability. At the Moon, the broadband, hemispherical irradiance from Earth near 0 phase is approximately 0.15 watts per square meter, with comparable contributions from solar reflectance and thermal emission. Over the simulation timeframe, spanning two lunations, Earth's thermal irradiance changes less than a few mW per square meter as a result of cloud variability and the south-to-north motion of sub-observer position. In solar band, Earth's diurnally averaged light curve at phase angles < 60 degrees is well fit using a Henyey Greenstein integral phase function. At wavelengths > 0.7 microns, near the well known vegetation "red edge", Earth's reflected solar radiance shows significant diurnal modulation as a result of the longitudinal asymmetry in projected landmass, as well as from the distribution of clouds. A simple formulation with adjustable coefficients is presented for estimating Earth's hemispherical irradiance at the Moon as a function of wavelength, phase angle and sub-observer coordinates. It is demonstrated that earthshine is sufficiently bright to serve as a natural illumination source for optical measurements from the lunar surface.Comment: 27 pages, 15 figures, 1 tabl

    Numerical Linked-Cluster Algorithms. I. Spin systems on square, triangular, and kagome lattices

    Full text link
    We discuss recently introduced numerical linked-cluster (NLC) algorithms that allow one to obtain temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diagonalization of finite clusters. We present studies of thermodynamic observables for spin models on square, triangular, and kagome lattices. Results for several choices of clusters and extrapolations methods, that accelerate the convergence of NLC, are presented. We also include a comparison of NLC results with those obtained from exact analytical expressions (where available), high-temperature expansions (HTE), exact diagonalization (ED) of finite periodic systems, and quantum Monte Carlo simulations.For many models and properties NLC results are substantially more accurate than HTE and ED.Comment: 14 pages, 16 figures, as publishe
    • 

    corecore