72 research outputs found

    Patient-reported outcomes with nivolumab in advanced solid cancers.

    Get PDF
    Patients with recurrent or metastatic cancer commonly suffer from debilitating toxicity associated with conventional treatment modalities, as well as disease-related symptoms, often with a concomitant negative impact on health-related quality of life (HRQoL). Patient-reported outcomes (PROs) provide important insights into the patient experience in clinical trials. Nivolumab is a programmed death-1 receptor inhibitor that extends survival in patients with recurrent or metastatic disease in multiple tumor types. In this review, we summarize published PRO analyses from eight phase II-IV clinical trials with nivolumab for the treatment of melanoma, non-small cell lung cancer, renal cell carcinoma (RCC), and squamous cell carcinoma of the head and neck (SCCHN). Symptom burden, physical functioning, and HRQoL were measured using generic, cancer-specific, and tumor type-specific validated PRO instruments. Nivolumab showed sustained stabilization across all tumor types and, in some cases, clinically meaningful improvement in HRQoL, whereas standard of care therapies often led to deteriorations. Exploratory analyses found a positive correlation between baseline HRQoL scores and overall survival in RCC, and between baseline HRQoL scores and healthcare resource utilization in SCCHN, suggesting that patient-reported symptoms at treatment initiation may have clinical value. In the era of value-based oncology care, stakeholders are increasingly interested in PRO findings to guide clinical, regulatory, and reimbursement decisions. However, missing data remain a significant challenge in PRO analyses, including in nivolumab trials. Future clinical trials in immuno-oncology should incorporate PRO data collection, including beyond treatment discontinuation or trial completion to assess the long-term effects of treatment on HRQoL

    Alterations of immune response of non-small lung cancer with azacytidine

    Get PDF
    Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade

    C19orf48 encodes a minor histocompatibility antigen recognized by CD8+ cytotoxic T cells from renal cell carcinoma patients.

    Get PDF
    PURPOSE: Tumor regression has been observed in some patients with metastatic renal cell carcinoma (RCC) after nonmyeloablative allogeneic hematopoietic cell transplantation (HCT). Cellular and molecular characterization of antigens recognized by tumor-reactive T cells isolated from responding patients could potentially provide insight into the mechanisms of tumor regression. EXPERIMENTAL DESIGN: CD8+ CTL clones that recognized a novel RCC-associated minor histocompatibility (H) antigen presented by HLA-A*0201 were isolated from two patients with metastatic RCC who experienced tumor regression or stable disease following nonmyeloablative allogeneic HCT. These clones were used to screen a cDNA library and isolate the unique cDNA encoding the antigen. RESULTS: An alternative open reading frame in the C19orf48 gene located on chromosome 19q13 encodes the HLA-A*0201-restricted minor H antigen recognized by the RCC-reactive T cells. The differential T-cell recognition of donor- and recipient-derived target cells is attributable to a nonsynonymous single-nucleotide polymorphism within the nucleotide interval that encodes the antigenic peptide. Assays for gene expression and CTL recognition showed that the C19orf48-encoded peptide is widely expressed in renal tumors and solid tumors of other histologies. The antigenic peptide can be processed for CTL recognition via both TAP-dependent and TAP-independent pathways. CONCLUSIONS: Donor T-cell responses against the HLA-A*0201-restricted minor H antigen encoded by C19orf48 may contribute to RCC regression after MHC-matched allogeneic HCT

    Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition

    Full text link
    Abstract Background Metastatic melanoma (mM) and renal cell carcinoma (mRCC) are often treated with anti-PD-1 based therapy, however not all patients respond and further therapies are needed. High dose interleukin-2 (HD IL-2) can lead to durable responses in a subset of mM and mRCC patients. The efficacy and toxicity of HD IL-2 therapy following anti-PD-1 or anti-PD-L1 therapy have not yet been explored. Methods Reports on mM and mRCC patients who had received HD IL-2 after PD-1 or PD-L1 inhibition were queried from the PROCLAIMSM database. Patient characteristics, toxicity and efficacy were analyzed. Results A total of 57 patients (40 mM, 17 mRCC) were treated with high dose IL-2 after PD-1 or PD-L1 inhibition and had data recorded in the PROCLAIM database. The best overall response rate to HD IL-2 was 22.5% for mM (4 complete response (CR), 5 partial responses (PRs)) and 24% for mRCC (2 CRs, 2 PRs). The toxicity related to HD IL-2 observed in these patients was similar to that observed in patients treated with HD IL-2 without prior checkpoint blockade. One patient who had received prior PD-L1 blockade developed drug induced pneumonitis with HD IL-2 requiring steroid therapy. Conclusion In this retrospective analysis, HD IL-2 therapy displayed durable antitumor activity in mM and mRCC patients who progressed following treatment with PD-1 and PD-L1 inhibition. The toxicities were generally manageable and consistent with expectations from HD IL-2 but physicians should watch for immune related toxicities such as pneumonitis. This analysis supports the development of randomized prospective trials to assess the proper sequencing and combination of immune checkpoint blockade and cytokine therapy.https://deepblue.lib.umich.edu/bitstream/2027.42/148134/1/40425_2019_Article_522.pd

    Adoptive immunotherapy against allogeneic kidney grafts in dogs with stable hematopoietic trichimerism.

    Get PDF
    Dogs given nonmyeloablative conditioning and marrow grafts from 2 dog leukocyte antigen (DLA)-identical littermate donors developed stable trichimerism and stably accepted a subsequent kidney graft from one of the marrow donors without the need for immunosuppression. In this study, we used trichimeras to evaluate strategies for adoptive immunotherapy to solid tumors, using the kidney as a tumor surrogate. Three DLA-identical trichimeric recipients were established by simultaneously infusing marrow from 2 DLA-identical donor dogs into a DLA-identical recipient conditioned with 2 Gy of total body irradiation (TBI) and given a short course of postgraft immunosuppression. After stable hematopoietic engraftment was confirmed, a kidney was transplanted from 1 of the 2 marrow donors into each respective trichimeric recipient. Peripheral blood lymphocytes from each kidney donor were then used to sensitize the alternate marrow donor. The trichimeric recipients were given donor lymphocyte infusions (DLIs) from the sensitized dogs and monitored for chimerism, graft-versus-host disease (GVHD), and kidney rejection. After DLI, we observed both prompt rejection of the transplanted marrow and donor kidney and disappearance of corresponding hematopoietic chimerism. Presumably due to shared minor histocompatibility antigens, host chimerism also disappeared, and GVHD in skin, gut, and liver developed. The native kidneys, although exhibiting lymphocytic infiltration, remained functionally normal. This study demonstrates that under certain experimental conditions, the kidney--an organ ordinarily not involved in graft-versus-host reactions--can be targeted by sensitized donor lymphocytes

    Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

    Get PDF
    This randomised phase III trial compared standard of care Everolimus with the anti-PD1 monoclonal antibody Nivolumab in previously treated patients with locally advanced inoperable or metastatic clear cell renal cancer. 810 patients were randomised to receive either Everolimus 10 mg orally daily or 3 mg/kg of Nivolumab intravenously every two weeks. Patients were treated until unacceptable toxicity or disease progression. Patients could be treated beyond progression if the investigator believed that the patient was gaining clinical benefit. The primary endpoint was overall survival. The median survival was 25 months for Nivolumab and 19.8 months for Everolimus (p=0.002). The objective response rate was higher for Nivolumab (25 versus 5%; p=<0.001).The median progression free survivals were 4.6 & 4.4 months (p=0.11). Grade 3 & 4 treatment related toxicities were observed in 19 & 37% of patients on Nivolumab or Everolimus respectively. In patients with previously treated renal cell carcinoma Nivolumab produced superior survival and more tolerable treatment than Everolimus

    Case-Control Study of Fetal Microchimerism and Breast Cancer

    Get PDF
    Prior pregnancy is known to protect against development of breast cancer. Recent studies have demonstrated that pregnancy has the capacity to establish small numbers of immunologically active fetal-derived cells in the mother, a phenomenon known as fetal microchimerism (FMc). We asked whether presence of FMc, routinely acquired during pregnancy, is a protective factor for breast cancer.DNA extracts from peripheral blood specimens were obtained from a population-based case-control study of risk factors for breast cancer in women 21 to 45 years old. Specimens were tested with quantitative PCR for presence and concentrations of male DNA presumed to derive from prior pregnancies with a male fetus. Odds ratios (OR) and 95% confidence intervals (CI) were estimated with consideration of multiple established reproductive and environmental risk factors for breast cancer. FMc results were generated on 99 parous women, 54 with primary invasive breast cancer and 45 general population controls. FMc prevalence was 56% (25/45) and 26% (14/54) in controls and cases, respectively. Women harboring FMc were less likely to have had breast cancer (OR = 0.29, 95% CI 0.11-0.83; p = 0.02, adjusting for age, number of children, birth of a son, history of miscarriage, and total DNA tested). In addition, FMc concentrations were higher in controls versus cases (p = 0.01). Median concentrations were 2 (0-78) and 0 (0-374) fetal genomes/10(6) maternal genomes in controls and cases, respectively.Results suggest that the enigma of why some parous women are not afforded protection from breast cancer by pregnancy might in part be explained by differences in FMc. Mechanistic studies of FMc-derived protection against breast cancer are warranted

    Non-conventional sources of peptides presented by MHC class I

    Get PDF
    Effectiveness of immune surveillance of intracellular viruses and bacteria depends upon a functioning antigen presentation pathway that allows infected cells to reveal the presence of an intracellular pathogen. The antigen presentation pathway uses virtually all endogenous polypeptides as a source to produce antigenic peptides that are eventually chaperoned to the cell surface by MHC class I molecules. Intriguingly, MHC I molecules present peptides encoded not only in the primary open reading frames but also those encoded in alternate reading frames. Here, we review recent studies on the generation of cryptic pMHC I. We focus on the immunological significance of cryptic pMHC I, and the novel translational mechanisms that allow production of these antigenic peptides from unconventional sources
    corecore