296 research outputs found

    Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A2\braket{A^2} in the Landau gauge

    Get PDF
    We consider the gluon propagator D(p2)D(p^2) at various lattice sizes and spacings in the case of pure SU(3) Yang-Mills gauge theories using the Landau gauge fixing. We discuss a class of fits in the infrared region in order to (in)validate the tree level analytical prediction in terms of the (Refined) Gribov-Zwanziger framework. It turns out that an important role is played by the presence of the widely studied dimension two gluon condensate A2\braket{A^2}. Including this effect allows to obtain an acceptable fit up to 1 \'{a} 1.5 GeV, while corroborating the Refined Gribov-Zwanziger prediction for the gluon propagator. We also discuss the infinite volume extrapolation, leading to the estimate D(0)=8.3±0.5GeV2D(0)=8.3\pm0.5\text{GeV}^{-2}. As a byproduct, we can also provide the prediction g2A23GeV2\braket{g^2 A^2}\approx 3\text{GeV}^2 obtained at the renormalization scale μ=10GeV\mu=10\text{GeV}.Comment: 17 pages, 10 figures, updated version, accepted for publication in Phs.Rev.

    A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results

    Full text link
    Recent lattice data have reported an infrared suppressed, positivity violating gluon propagator which is nonvanishing at zero momentum and a ghost propagator which is no longer enhanced. This paper discusses how to obtain analytical results which are in qualitative agreement with these lattice data within the Gribov-Zwanziger framework. This framework allows one to take into account effects related to the existence of gauge copies, by restricting the domain of integration in the path integral to the Gribov region. We elaborate to great extent on a previous short paper by presenting additional results, also confirmed by the numerical simulations. A detailed discussion on the soft breaking of the BRST symmetry arising in the Gribov-Zwanziger approach is provided.Comment: 38 pages, 9 figures, the content of section V has been extended and adapte

    Physical phase space of lattice Yang-Mills theory and the moduli space of flat connections on a Riemann surface

    Get PDF
    It is shown that the physical phase space of \g-deformed Hamiltonian lattice Yang-Mills theory, which was recently proposed in refs.[1,2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with (LV+1)(L-V+1) handles and therefore with the physical phase space of the corresponding (2+1)(2+1)-dimensional Chern-Simons model, where LL and VV are correspondingly a total number of links and vertices of the lattice. The deformation parameter \g is identified with 2πk\frac {2\pi}{k} and kk is an integer entering the Chern-Simons action.Comment: 12 pages, latex, no figure

    A2(2)A_{2}^{(2)} Gaudin model and its associated Knizhnik-Zamolodchikov equation

    Full text link
    The semiclassical limit of the algebraic Bethe Ansatz for the Izergin-Korepin 19-vertex model is used to solve the theory of Gaudin models associated with the twisted A2(2)A_{2}^{(2)} R-matrix. We find the spectra and eigenvectors of the N1N-1 independents Gaudin Hamiltonians. We also use the off-shell Bethe Ansatz method to show how the off-shell Gaudin equation solves the associated trigonometric system of Knizhnik-Zamolodchikov equations.Comment: 20 pages,no figure, typos corrected, LaTe

    osp(12)osp(1|2) off-shell Bethe ansatz equation with boundary terms

    Full text link
    This work is concerned with the quasi-classical limit of the boundary quantum inverse scattering method for the osp(12)osp(1|2) vertex model with diagonal KK-matrices. In this limit Gaudin's Hamiltonians with boundary terms are presented and diagonalized. Moreover, integral representations for correlation functions are realized to be solutions of the trigonometric Knizhnik-Zamoldchikov equations.Comment: 38 pages, minor revison, LaTe

    Landau gauge within the Gribov horizon

    Full text link
    We consider a model which effectively restricts the functional integral of Yang--Mills theories to the fundamental modular region. Using algebraic arguments, we prove that this theory has the same divergences as ordinary Yang Mills theory in the Landau gauge and that it is unitary. The restriction of the functional integral is interpreted as a kind of spontaneous breakdown of the BRSBRS symmetry.Comment: 17 pages, NYU-TH-93/10/0

    A Lattice Study of the Gluon Propagator in Momentum Space

    Full text link
    We consider pure glue QCD at beta=5.7, beta=6.0 and beta=6.3. We evaluate the gluon propagator both in time at zero 3-momentum and in momentum space. From the former quantity we obtain evidence for a dynamically generated effective mass, which at beta=6.0 and beta=6.3 increases with the time separation of the sources, in agreement with earlier results. The momentum space propagator G(k) provides further evidence for mass generation. In particular, at beta=6.0, for k less than 1 GeV, the propagator G(k) can be fit to a continuum formula proposed by Gribov and others, which contains a mass scale b, presumably related to the hadronization mass scale. For higher momenta Gribov's model no longer provides a good fit, as G(k) tends rather to follow an inverse power law. The results at beta=6.3 are consistent with those at beta=6.0, but only the high momentum region is accessible on this lattice. We find b in the range of three to four hundred MeV and the exponent of the inverse power law about 2.7. On the other hand, at beta=5.7 (where we can only study momenta up to 1 GeV) G(k) is best fit to a simple massive boson propagator with mass m. We argue that such a discrepancy may be related to a lack of scaling for low momenta at beta=5.7. {}From our results, the study of correlation functions in momentum space looks promising, especially because the data points in Fourier space turn out to be much less correlated than in real space.Comment: 19 pages + 12 uuencoded PostScript picture

    Fermi Surfaces of Diborides: MgB2 and ZrB2

    Full text link
    We provide a comparison of accurate full potential band calculations of the Fermi surfaces areas and masses of MgB2 and ZrB2 with the de Haas-van Alphen date of Yelland et al. and Tanaka et al., respectively. The discrepancies in areas in MgB2 can be removed by a shift of sigma-bands downward with respect to pi-bands by 0.24 eV. Comparison of effective masses lead to orbit averaged electron-phonon coupling constants lambda(sigma)=1.3 (both orbits), lambda(pi)=0.5. The required band shifts, which we interpret as an exchange attraction for sigma states beyond local density band theory, reduces the number of holes from 0.15 to 0.11 holes per cell. This makes the occurrence of superconductivity in MgB2 a somewhat closer call than previously recognized, and increases the likelihood that additional holes can lead to an increased Tc.Comment: 7 pages including 4 figure

    Infrared Features of the Landau Gauge QCD

    Full text link
    The infrared features of Landau gauge QCD are studied by the lattice simulation of β=6.0,164,244,324\beta=6.0, 16^4, 24^4, 32^4 and β=6.4,324,484\beta=6.4, 32^4, 48^4. We adopt two definitions of the gauge field; 1) UU-linear 2) logU\log U and measured the gluon propagator and ghost propagator. Infrared singularity of the gluon propagator is less than that of tree level result but the gluon propagator at 0 momentum remains finite. The infrared singularity of ghost propagator is stronger than the tree level. The QCD running coupling measured by using the gluon propagator and the ghost propagator has a maximum αs(p)1\alpha_s(p)\simeq 1 at around p=0.5GeVp=0.5GeV and decreases as pp approaches 0. The data are analyzed in use of formula of the principle of minimal sensitivity(PMS), the effective charge method and the contour-improved perturbation method, which suggest necessity of the resummation of perturbation series in the infrared region together with existence of the infrared fixed point. Kugo-Ojima parameter saturates at about -0.8 in contrast to the theoretically expected value -1.Comment: RevTex4, 9 pages, 10 eps figures, Typos corrected. To be published in Phys. Rev. D(2004

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability
    corecore