14 research outputs found

    Lidar Validation Measurements at the NOAA Mauna Loa Observatory NDACC Station

    Get PDF
    NASA's Goddard Space Flight Center (GSFC) transported two lidar instruments to the NOAA facility at the Mauna Loa Observatory (MLO) on the Big Island of Hawaii, to participate in an official, extended validation campaign. This site is situated 11,141 ft. above sea level on the side of the mountain. The observatory has been making atmospheric measurements regularly since the 1950's, and has hosted the GSFC Stratospheric Ozone (STROZ) Lidar and the GSFC Aerosol and Temperature (AT) Lidar on several occasions, most recently between November, 2012 and November, 2015. The purpose of this extended deployment was to participate in Network for the Detection of Atmospheric Composition Change (NDACC) Validation campaigns with the JPL Stratospheric Ozone Lidar and the NOAA Temperature, Aerosol and Water Vapor instruments as part of the routine NDACC Validation Protocol

    Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPP Campaigns

    Get PDF
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry xperiment (FRAPP) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than 15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than 5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts

    A História da Alimentação: balizas historiográficas

    Full text link
    Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema

    Results of a Longer Term NDACC Measurements Comparison Campaign at Mauna Loa Observatory

    Get PDF
    Between November, 2015 and January, 2015, the Goddard Space Flight Center operated a pair of lidar instruments at the NOAA facility at Mauna Loa on the Big Island of Hawaii (Lat. 19.5N, Lon. 155.5 W, Altitude 3.397 km). Measurements were made during six different four week periods during this time period by both the NASA GSFC Stratospheric Ozone Lidar (STROZ) and the Aerosol and Temperature (ATL) lidar. Also making measurements were the JPL Stratospheric Ozone Lidar and the NOAA Aerosol and Water Vapor Lidar. All instruments participate and archive data with the Network for the Detection of Atmospheric Composition Change. Measurement comparisons were made among various instruments in accordance with the standard intercomparison protocols of the NDACC

    Results of a Longer Term NDACC Measurements Comparison Campaign at Mauna Loa Observatory

    No full text
    Between November, 2015 and January, 2015, the Goddard Space Flight Center operated a pair of lidar instruments at the NOAA facility at Mauna Loa on the Big Island of Hawaii (Lat. 19.5N, Lon. 155.5 W, Altitude 3.397 km). Measurements were made during six different four week periods during this time period by both the NASA GSFC Stratospheric Ozone Lidar (STROZ) and the Aerosol and Temperature (ATL) lidar. Also making measurements were the JPL Stratospheric Ozone Lidar and the NOAA Aerosol and Water Vapor Lidar. All instruments participate and archive data with the Network for the Detection of Atmospheric Composition Change. Measurement comparisons were made among various instruments in accordance with the standard intercomparison protocols of the NDACC

    Quantifying the Contribution of Thermally Driven Recirculation to a High-Ozone Event Along the Colorado Front Range Using Lidar

    Get PDF
    A high-ozone (O3) pollution episode was observed on 22 July 2014 during the concurrent Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) and Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns in northern Colorado. Surface O3 monitors at three regulatory sites exceeded the Environmental Protection Agency (EPA) 2008 National Ambient Air Quality Standard (NAAQS) daily maximum 8h average (MDA8) of 75ppbv. To further characterize the polluted air mass and assess transport throughout the event, measurements are presented from O3 and wind profilers, O3-sondes, aircraft, and surface-monitoring sites. Observations indicate that thermally driven upslope flow was established throughout the Colorado Front Range during the pollution episode. As the thermally driven flow persisted throughout the day, O3 concentrations increased and affected high-elevation Rocky Mountain sites. These observations, coupled with modeling analyses, demonstrate a westerly return flow of polluted air aloft, indicating that the mountain-plains solenoid circulation was established and impacted surface conditions within the Front Range

    Measurements of Humidity in the Atmosphere and Validation Experiments (Mohave, Mohave II): Results Overview

    No full text
    The Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE, MOHAVE-II) inter-comparison campaigns took place at the Jet Propulsion Laboratory (JPL) Table Mountain Facility (TMF, 34.5(sup o)N) in October 2006 and 2007 respectively. Both campaigns aimed at evaluating the capability of three Raman lidars for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS). During each campaign, more than 200 hours of lidar measurements were compared to balloon borne measurements obtained from 10 Cryogenic Frost-point Hygrometer (CFH) flights and over 50 Vaisala RS92 radiosonde flights. During MOHAVE, fluorescence in all three lidar receivers was identified, causing a significant wet bias above 10-12 km in the lidar profiles as compared to the CFH. All three lidars were reconfigured after MOHAVE, and no such bias was observed during the MOHAVE-II campaign. The lidar profiles agreed very well with the CFH up to 13-17 km altitude, where the lidar measurements become noise limited. The results from MOHAVE-II have shown that the water vapor Raman lidar will be an appropriate technique for the long-term monitoring of water vapor in the UT/LS given a slight increase in its power-aperture, as well as careful calibration

    TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns

    No full text
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure atmospheric profiles of ozone and aerosols, to contribute to air-quality studies, atmospheric modeling, and satellite validation efforts. The accurate characterization of these lidars is of critical interest, and is necessary to determine cross-instrument calibration uniformity. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the “Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality” (DISCOVER-AQ) mission and the “Front Range Air Pollution and Photochemistry Éxperiment” (FRAPPÉ) to measure sub-hourly ozone variations from near the surface to the top of the troposphere. Although large differences occur at few individual altitudes in the near field and far field range, the TOLNet lidars agree with each other within ±4%. These results indicate excellent measurement accuracy for the TOLNet lidars that is suitable for use in air-quality and ozone modeling efforts

    TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns

    No full text
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure atmospheric profiles of ozone and aerosols, to contribute to air-quality studies, atmospheric modeling, and satellite validation efforts. The accurate characterization of these lidars is of critical interest, and is necessary to determine cross-instrument calibration uniformity. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the “Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality” (DISCOVER-AQ) mission and the “Front Range Air Pollution and Photochemistry Éxperiment” (FRAPPÉ) to measure sub-hourly ozone variations from near the surface to the top of the troposphere. Although large differences occur at few individual altitudes in the near field and far field range, the TOLNet lidars agree with each other within ±4%. These results indicate excellent measurement accuracy for the TOLNet lidars that is suitable for use in air-quality and ozone modeling efforts

    Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPPE Campaigns

    No full text
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Experiment (FRAPPA) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than +/-15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than +/-5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts
    corecore