44 research outputs found

    Using Multi-agent Systems to Pursue Autonomy with Automated Components

    Get PDF
    AbstractHumans have used tools to transform raw resources into valued outputs ever since society harnessed fire. The type of tool, amount of effort and form of energy required depends on the output or object being created. As tools evolved into machines, they enhanced operator productivity. Hence, industry continues to invest heavily in machines to assist people to do more with less physical control and/or interaction. This involves automating functions previously completed manually. Taylorism and the Hawthorn experiments all contributed to optimising industrial outputs and value engineers continue to promote a mecha- nized workforce in order to minimise business variations in human performance and their behaviour. Researchers have also pursued this goal using Computational Intelligence (CI) techniques. This process of transforming cognitive functionality into machine actionable form has encompassed many careers. Machine Intelligence (MI) is becoming more aspirational, with Artificial Intelligence (AI) enabling the achievement of numerous goals. More recently, Multi-Agent Systems (MASs) have been employed to provide a flexible framework for research and development. These frameworks facilitate the development of component interoperability, with coordination and cooperation techniques needed to solve real-world problems. However problems typically manifest in complex, dynamic and often hostile environments. Based on the effort to seek or facilitate human-like decision making within machines, it is clear that further research is required. This paper discusses one possible avenue. It involves future research, aimed at achieving a cognitive sub-system for use on-board platforms. The framework is introduced by describing the human-machine relationship, followed by the theoretic background into cognitive architectures and a conceptual mechanism that could be used to implement a virtual mind. One which could be used to improve automation, achieve greater independence and enable more autonomous behaviour within control systems

    Engineered nanomaterials: toward effective safety management in research laboratories

    Get PDF
    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided.Results: Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk.Conclusions: We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation, chemical, etc.) facilitates the management for occupational health and safety specialists. Institutes and school managers can obtain the necessary information to implement an adequate safety management system. Having an easy-to-use tool enables a dialog between all these partners, whose semantic and priorities in terms of safety are often different

    Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial.

    Get PDF
    BACKGROUND: Studies evaluating titration of antihypertensive medication using self-monitoring give contradictory findings and the precise place of telemonitoring over self-monitoring alone is unclear. The TASMINH4 trial aimed to assess the efficacy of self-monitored blood pressure, with or without telemonitoring, for antihypertensive titration in primary care, compared with usual care. METHODS: This study was a parallel randomised controlled trial done in 142 general practices in the UK, and included hypertensive patients older than 35 years, with blood pressure higher than 140/90 mm Hg, who were willing to self-monitor their blood pressure. Patients were randomly assigned (1:1:1) to self-monitoring blood pressure (self-montoring group), to self-monitoring blood pressure with telemonitoring (telemonitoring group), or to usual care (clinic blood pressure; usual care group). Randomisation was by a secure web-based system. Neither participants nor investigators were masked to group assignment. The primary outcome was clinic measured systolic blood pressure at 12 months from randomisation. Primary analysis was of available cases. The trial is registered with ISRCTN, number ISRCTN 83571366. FINDINGS: 1182 participants were randomly assigned to the self-monitoring group (n=395), the telemonitoring group (n=393), or the usual care group (n=394), of whom 1003 (85%) were included in the primary analysis. After 12 months, systolic blood pressure was lower in both intervention groups compared with usual care (self-monitoring, 137·0 [SD 16·7] mm Hg and telemonitoring, 136·0 [16·1] mm Hg vs usual care, 140·4 [16·5]; adjusted mean differences vs usual care: self-monitoring alone, -3·5 mm Hg [95% CI -5·8 to -1·2]; telemonitoring, -4·7 mm Hg [-7·0 to -2·4]). No difference between the self-monitoring and telemonitoring groups was recorded (adjusted mean difference -1·2 mm Hg [95% CI -3·5 to 1·2]). Results were similar in sensitivity analyses including multiple imputation. Adverse events were similar between all three groups. INTERPRETATION: Self-monitoring, with or without telemonitoring, when used by general practitioners to titrate antihypertensive medication in individuals with poorly controlled blood pressure, leads to significantly lower blood pressure than titration guided by clinic readings. With most general practitioners and many patients using self-monitoring, it could become the cornerstone of hypertension management in primary care. FUNDING: National Institute for Health Research via Programme Grant for Applied Health Research (RP-PG-1209-10051), Professorship to RJM (NIHR-RP-R2-12-015), Oxford Collaboration for Leadership in Applied Health Research and Care, and Omron Healthcare UK

    A Review of Cognitive Decision-making within Future Mission Systems

    Get PDF
    AbstractThis paper provides an outline of historical attempts to achieve human-like decision-making within machines. It concludes with a proposed conceptual approach of how researchers might pursue cognitive mission systems designs in the future. A number of potential success stories need to be explored in order to revise existing techniques and identify which techniques could be componentised for use in this future design. Existing cognitive systems have evolved over time, using; LISt Pro- cessing (LISP), PROLOG and Object Oriented Programming (OOP) languages. These were used to represent information using lists, scripts, frames, schemas, production rules, procedural, semantic and declarative processes. As Computational Intelligence (CI) techniques evolved, a number of frameworks emerged; such as Recognition-Primed Decision (RPD), Pro- cedural Reasoning System (PRS), Collaborative Agent for Simulating Teamwork (CAST), Adaptive Character of Thought– Rational (ACT-R), distributed Multi-Agent Reasoning System (dMars), State, Operator And Result (SOAR) and Java Agent Compiler and Kernel (JACK). Many of these failed to gain traction because the problem-space has become more complex and existing heuristic code quickly becomes unwieldy with no guaranteed solution. Although currently heuristic systems relieve humans of routine activities, they are not able to independently reproduce intuition, insight or cognitive learning. Researchers have repetitively attempted to enhance the level of decision-making capabilities, but few have achieved success without aug- mented human support. Emerging frameworks continue to re-use a number of recurring themes to solve constrained problems, although most techniques cannot transform information into knowledge or wisdom. This paper highlights a number of the more successful concepts that could be used to progressively derive components to form a working cognitive decision-making model within a future mission system

    Embedded Automation in Human-Agent Environment

    No full text
    This research book proposes a general conceptual framework for the development of automation in human-agents environments that will allow human- agent teams to work effectively and efficiently. We examine various schemes to implement artificial intelligence techniques in agents.  The text is directed to the scientists, application engineers, professors and students of all disciplines, interested in the agency methodology and applications

    Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation

    No full text
    The somatosensory cortex of adult mammals has been shown to have a capacity to reorganize when inputs are removed by cutting afferent nerves or amputating a part of the body. The area of cortex that would normally respond to stimulation of the missing input can become responsive to inputs from other parts of the body surface. Although a few animals have been studied with repeat recording, no attempt has been made to follow the time-course of changes at cortical loci and the immediate effects of a small amputation have not been reported. We have followed the changes in response in the primary somatosensory cortex in the flying-fox following amputation of the single exposed digit on the forelimb. Immediately after amputation, neurons in the area of cortex receiving inputs from the missing digit were not silent but responded to stimulation of adjoining regions of the digit, hand, arm and wing. In the week following amputation, the enlarged receptive fields shrank until they covered only the skin around the amputation wound. The immediate response is interpreted as a removal of inhibition and the subsequent shrinking of the field may be due to re-establishment of the inhibitory balance in the affected cortex and its inputs
    corecore