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Abstract

This paper provides an outline of historical attempts to achieve human-like decision-making within machines. It concludes

with a proposed conceptual approach of how researchers might pursue cognitive mission systems designs in the future. A

number of potential success stories need to be explored in order to revise existing techniques and identify which techniques

could be componentised for use in this future design. Existing cognitive systems have evolved over time, using; LISt Pro-

cessing (LISP), PROLOG and Object Oriented Programming (OOP) languages. These were used to represent information

using lists, scripts, frames, schemas, production rules, procedural, semantic and declarative processes. As Computational

Intelligence (CI) techniques evolved, a number of frameworks emerged; such as Recognition-Primed Decision (RPD), Pro-

cedural Reasoning System (PRS), Collaborative Agent for Simulating Teamwork (CAST), Adaptive Character of Thought–

Rational (ACT-R), distributed Multi-Agent Reasoning System (dMars), State, Operator And Result (SOAR) and Java Agent

Compiler and Kernel (JACK). Many of these failed to gain traction because the problem-space has become more complex and

existing heuristic code quickly becomes unwieldy with no guaranteed solution. Although currently heuristic systems relieve

humans of routine activities, they are not able to independently reproduce intuition, insight or cognitive learning. Researchers

have repetitively attempted to enhance the level of decision-making capabilities, but few have achieved success without aug-

mented human support. Emerging frameworks continue to re-use a number of recurring themes to solve constrained problems,

although most techniques cannot transform information into knowledge or wisdom. This paper highlights a number of the

more successful concepts that could be used to progressively derive components to form a working cognitive decision-making

model within a future mission system.
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1. Introduction

Dreyfus cites that Artificial Intelligence (AI) began as a continuum hypothesis aimed at formalizing common

sense understanding within intelligent machines [1]. In 1957 Newell predicted that a computer would be a world

∗J.W. Tweedale. Tel.: +618-7389-6457; fax: +618-7389-5507.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of KES International.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.191&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.191&domain=pdf


1044   Jeffrey W. Tweedale  /  Procedia Computer Science   35  ( 2014 )  1043 – 1052 

champion chess player within ten years [2]. In 1965, Simons heralded that “Within twenty years, machines will be

capable of doing any work that a human can do” [3]. In 1979 McCorduck introduced the concepts associated with

how machines can Think using AI techniques [4]. She inferred that calculative rationality can improve society,

although history reveals there has been limited success. Similarly, Dreyfus interjected, that “AI must wait for a

computer with an entirely different design. One that reflects a prototype of the little understood human brain”

although in 1986 he added that computers will influence society and he considered as a disruptive technology that

would stimulate significant change within many organisations [1].

More recently, computer scientists aspire to amplify human reasoning within a virtual mind, ultimately emulat-

ing cognitive capabilities within silicon systems. Unfortunately genuine know-how, wisdom and good judgement
may be sacrificed in the process, however explicit and logical automation will eventually emerge. Dreyfus indi-

cates that human intuition is real and concludes that it usurps declarative or rule-based decision-making [1]. For

example, in 1948 he cites the process of chicken sexing [5] as a turning point in concepts associated with learn-

ing systems. This resulted in Benner documenting his five stages of cognitive learning. These include: novice,

advanced beginner, competent, proficient and expert [1]. Here, specific events escalate, starting from context free,

situation, competence, proficiency and expertise [6]. Similarly, the Set goals, Think, Act, Review and Supply

improvement (Stars) approach recently evolved to guide researchers when acquiring knowledge [7].

These processes transitioned into machine learning systems. The first significant examples used the Saphira
software architecture – 1997. This was a layered control operating system that the replaced the original Procedural

Reasoning System (PRS) controller used in the Stanford Research Institute (SRI) robot called Flakey introduced

in 1992. This robot was a reactive control system based on a natural language interface (voice synthesis and

recognition), 12 radially spaced sonar sensors and a stereo vision (dual cameras mounted on a pan/tilt head) [8].

This software constructed a synthetic representation of its local environment using low-level occupancy grids [9].

This system allows external control features that can also be stored (as artefacts) to assist with navigation and

real-world orientation. Regardless of the platform, its underlying theories of learning and cognition will continue

to challenge researchers across multiple domains.

Over time, both ‘Production systems’ and the Beliefs, Desires and Intent (BDI) frameworks have become

popular. They both produced a long pedigree of commercial-strength solutions. This longevity indicates that the

founding concepts are both sound and extensible. This is clearly illustrated in the progression of BDI implemen-

tations from PRS – 1986 [10] to dMARS – 1997 [11] to JACK – 1997 [12] and eventually JACK Teams – 2004

[13]. Other success stories include Jennings’ GRATE – 1995 [14], Tambes’ STEAM – 1997 [15]1 and Tidhars’

Battle Model – 1999 [16]. New team based cognitive concepts may gain favour. Some example include: norms,

obligation and commitment. Ultimately each of these concepts must be capable of scaling to solve real-world

problems. They should also be capable of performing higher-level cognitive decision-making. Hence this paper

attempts to discuss a number of successful mechanisms that could be integrated to achieve enhanced performance

and focus on achieving increasing levels of cognitive decision-making.

Section 2 provides background information about the experts and concepts. Section 3 introduces concepts

associated with PRS and Recognition-Primed Collaborative Agent for Simulating Teamwork (R-CAST) – 2001,

while Section 4 discusses a basic schematic of the proposed cognitive mission system. Finally, Section 5 highlights

this author’s conclusion and possible future activities.

2. Background

Dreyfus believes that “competent performance is rational, proficiency is transitional; but only experts act

rationally” [1]. He describes rationality as the ability to react without conscious analytic decomposition or recon-

struction. He also uses the term conscious calculative rationality to describe the degraded level of skills typically

associated with the ongoing enforcement of know-that rules. Similarly he promotes the use of know-how or delib-
erative rationality as a means of improving intuition, where time constraints and context will generally constrain

the latter. It is clear that humans generally think just-in-time, although the expert may actually connect previous

1STEAM is a multi-agent system built on top of State, Operator And Result (SOAR) – 1987.
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experiences with an imagined future. For instance, humans do NOT normally experience new situations in iso-

lation. Humans typically adjust their perception based on a transition between one event and another. For this

reason, they are seldom void of information when new problems manifest. As they learn, they also possess former

experiences upon which they can reference or draw an associative response. Unfortunately, most AI research has

evolved trying to solve problems associated with one of these micro or flat-world scenes, typically in isolation to

all others.

Experts will describe their awareness using all environmental elements that appear within their visual focus,

where a novice will typically react only to one or more of the component pieces. Experts respond to concepts,

rather than simple chunks of information, for instance; the castled king’s formation in chess. This form of intuition

is hard to describe, because words (explanation) alone don’t provide the cognitive links used by individuals to pro-

cess subconscious concepts (rationalisation). Again, this similarity of symptoms must also be assessed within the

context of the situation. The expert will seamlessly transform these abstract situations into concrete experiences

by decomposing the environment into recognizable elements that can be associated with skills or behaviour that

has worked in the past [1].

Boyd described a similar belief in his Observe, Orient, Decide and Act (OODA) cycle [17]. In this pro-

cess, humans are required to focus on their observations and orient this to their internal beliefs before deciding

or acting. More recently van Loon introduced the Stars approach that focuses on cognitive enhancement and

decision-making at any point in the cycle of actions monitored using the following steps:

• Data collection;

• Sharing and analysing information;

• Transforming learned information into heuristic knowledge;

• Interpreting heuristic knowledge into concepts;

• Apply concepts to gain competencies;

• Integrating multiple competencies to develop expertise; and

• Perform expert actions to master expertise and be able to teach others.

The Stars cycle collects data, shares information, transforms learning into knowledge, interprets intelligence

and competence, which is integrated as expertise. Mastered expertise is (re)injected and integrated with new

information entering the system where the cycle continues promoting the utility of knowledge. This is a close

approximation to how a Decision Support System (DSS) transforms environmental data into heuristic knowledge.

This cycle highlights the need to transform information into cognitive concepts that may ultimately be expressed

as seamless behavioural activities. Alternatively, Figure 1 depicts a visual representation of the Putzer and Onken

approach to designing a cognitive system used to assist machines in mimicking human behaviour.

Fig. 1. The Cognitive Process [18]
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The oval shaped body hosts the environmental data being processed (the center depicts the a-priori knowledge

while the outer contain the Situation Awareness (SA) information) [18]. The information flows are transformed

using situated processes within the dashed regions, with data being passed across the solid links in the direction

of the arrows. The information is interpreted and matched against predetermined patterns prior to choosing a plan

of action to ultimately realize a goal [19].

Software is used to implement these concepts and LISt Processing (LISP) was originally used to instantiate

predicated decisions based on a series of periodically refreshed heuristic parameters. For instance PRS-Lite used

less than 500 lines of LISP code in its executor [20]. A more complex system, label PRS-Classic was ultimately

used to monitor the Reaction Control System on-board the Space Shuttle [21]. This form of decision-making

has been labelled as meta-level reasoning, stimulating a number of popular systems, such as; PRS, Java Agent

Compiler and Kernel (JACK), Battle Model [16] and R-CAST. These frameworks continue to evolve in an effort

to increase the value of thought or cognitive decision-making achievable within machines.

3. Cognitive frameworks

Most early robotic control systems employed architectures that focused on marshalling lower-level processes

to invoke desired behaviour [22]. These systems were able to perform discrete actions while conducting contin-

uous processes (both goal or event driven). Heuristic logic has been used to process sensor data and maintain a

digital representation of the observable environment (described as structured information). Cognitive frameworks

allow designers to collect desired processes and embed the captured behaviour into platform control systems.

Procedural knowledge was used to provide a natural and expressive framework to encode and validate task-level

activities [20]. Unfortunately, the responsiveness of these systems relied heavily on the computational efficiency

of the reasoning engine. This approach typically incorporated a sense-act cycle (perceive, interpret and control).

Goals are semantically derived using a parametrised schema and the system responds automatically based on the

success or failure of predicated rules [23]. A procedural list or sequence of declared tasks (called intentions) can

be scripted to successively achieve tasks until the stated goals are satisfied. The level of success will be period-

ically measured against the internal beliefs of this reasoning system. The reasoning engine executes the activity

schema by switching between top-level goals (nodes) in a ‘forest’ of directed graphs [22].

A cognitive architecture should provide a framework where physical symbolic systems can be realised [24]. It

would provide definitions, resources, constraints and management processes needed to achieve cognitive process-

ing. Table 1 lists a number of cognitive architectures that have had limited forms of success [25].

A suite of BDI [34] agent frameworks ensued in an attempt to increase the level of cognitive decision-making

within machines. As suggested above, many sought to develop a form of perception that learns environmental

information by mimicking human-like, cognitive behaviour(s) to solve realistic problems. This is a non-trivial

task, because a human brain contains over 100 billion neurons. IBM and other researchers have managed to

emulate limited aspects of brain activity using computers. Regardless of the cost or resources used to emulate a

virtual mind, using this technology would consume the power of a medium sized town. For example, the Modular

Neural Exploring Travelling Agent (MoNETA) Project was used to synthesize a small mammalian brain in 2010.

This contained over 60,000 neurons and 120 million synaptic connections [35]. This success provides hope and

organisations like the National Aeronautics and Space Administration (NASA) continue to monitor its progress.

NASA has kindled a paradigm shift in designing mission systems. This shift has occurred for many reasons,

although it is generally attributed to design and maintenance costs. For example, the Galileo mission cost over

US $1B and still requires a ground control/maintenance crew of between 100 - 300 people, 24 hours per day for

the whole of its mission. Budget pressures offered no alternatives, therefore NASA endeavoured to transform to

lightweight control systems. The only other alternative was to abandon the flight program altogether. Previously

operators have monitored tele-visory links to maintain the decision-loop for machines. This fails to work when

communications are interrupted or become intermittent. Similarly, the distance of space has induced significant

temporal delays in the tele-presence control loop. This delay isolates the operator and removes the ability to take

reactive control measures. NASA was subsequently forced to introduce a virtual capability to emulate the human

presence and invoke time critical control decisions required during celestial travel. Their alternative was to exploit

the Remote Agents (RAs) using AI conventions and implement embedded systems with tractable reasoning [36].

The design of the Mars Pathfinder (MPF) mission demonstrated an order of magnitude in savings. The new
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Table 1. Early Cognitive Architectures

Year Project Subject Matter Experts Example
1986 PRS Georgeff, Lansky and Ingrand [20] Shakey the robot - Classical planning

(Deliberative Systems) and eventually PRS

1987 Soar Laird, Newel and Rosenbloom [26] Tac Air-Soar HBM - Production system to

yield behaviour

1990 Prodigy Carbonell, Knoblock and Minton [27] DYNAMIC - Planning and Learning

1995 ICARUS Langley, Cummings and Shapiro [28] BlockWorld - Conceptual memories for

problem solving and skill learning

1997 dMARS d’Inverno, Kinny, Luck and

Wooldrige [29]

Milou robot - Fuzzy Logic navigation and

BDI environmental integration

1997 JACK Georgeff and Lucas [30] Jadex - Agent oriented implementation of

BDI

1998 ACT(R) Anderson and Lebiere [31] jACT-R - Using declarative and procedural

Knowledge processing (Rational Thought)

1999 Battle Model Tildah [32] WCME - Off-the-shelf DSS using monte

carlo simulation and high fidelity scripted

scenarios

2001 R-CAST Yen, Yin, Ioerger, Miller, Xu, and

Volz [33]

PrT Nets - Adaptive decision making and

planning

paradigm created a significant challenge for scientists, because all previous on-board systems had no embedded

intelligence. More ambitious projects require teams of distributed intelligent agents to operate remotely, such as

the Cryobot Probe and Hydrobot Submercible, DS3 and the Martian pane.

A new Mission Planner was introduced to manage the fly-past of Europa. This platform had to operate up

to twelve months without direct human interaction when it began exploring the Martian surface. To achieve the

required autonomy, a New Millennium Autonomy Architecture Prototype (NewMAAP) agent was developed by

a group of AI researchers in six months at NASA Ames and Jet Propulsion Laboratories (JPL). The new agent

contained “integrated constraint-based planning and scheduling, robust multi-threaded execution, within a model-

based identification and reconfiguration module” [36]. Four distinctive features were:

• long-term autonomous operation;

• guaranteed success based on tight deadlines and resource constraints;

• high reliability; and

• concurrent activities within tightly coupled subsystems.

This style of programming is based on observation by initially exploring the breadth to accommodate the

functionality required in a given set of hardware. A best-first graph search algorithm was embedded into the

kernel [37] to cater for a wide range of narrowly focused diagnostic plans. This was implemented in a Reduced

Instruction Set Computer (RISC) approach to multi-threaded, goal directed execution. This avoids the creation

of a brittle mission profile across parallel mission segments. Klein believes that operators respond symbolically

using rate monotonic thin slicing to provide judgement or derive snap decisions [38]. He extends this concept of

processing information gained through human based sensors using experiential patterns stored in our subconscious

mind. Boyd further extends the human thought process to enable us to employ a control mechanism to focus on

the goal, through OODA [39]. Being a closed loop system, stimuli can be used in place of observations in an

OODA-based system to create a Stimulate Observe Decide and Act (SODA) framework, which works well within

a known contextual environment [40]. Such issues predominantly surface during complex, hostile engagements.

Especially in an environment where BDI can result in ‘mode’ confusion. Such confusion potentially compromises

the desired goal [41]. To reduce this problem Rasmussen postulates that people use experiential ladders [42] based

on the Rules, Skill and Knowledge (RSK) associated with the context of the environment (where each scenario
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should be extrapolated by Subject Matter Experts (SMEs)). Vicente studied this approach from the work domain
analysis perspective, concentrating on the cognitive domain to derive the problem scope [43].

In 1992 Ingrand et al. introduced an alternate methodology called PRS [10]. They described this BDI approach

to decision-making in a dynamic environment. The framework stores hierarchical procedures with conditions,

effects, and ordered steps that invoke sub-procedures. Dynamic data structures store beliefs about the environment,

while declarative rules contain desires that agent will attempt to achieve when the intentions the desired plans are

executed. Figure 2 displays a high level view of the PRS framework.

Fig. 2. Architecture for PRS [25]

This framework uses a periodic cycle to decide whether to continue executing its current intention or to select

a new intention to pursue [44]. BDI frameworks also exist in distributed Multi-Agent Reasoning System (dMars)

and JACK, however there is sufficient literature for the reader to pursue independent of the current paper. This

paper proposes an adaptive system, based on a BDI framework, in preference to the end-means approach used by

SOAR. To represent tele-visory control, a number of researchers integrated cognitive processes into Recognition-

Primed Decision (RPD) models with agents [33] to capture the decision making abilities of domain experts based

on the recognition of similarity between the current situation and past experiences. That is matching features with

symbolic cues to build a story. The recognition phase of decision making requires the development of a process

that generates a local view of situation awareness. Once oriented to the current environment, courses of action
can be determined from which decisions can be chosen. Subsequent rounds in the decision-making cycle continue

to evaluate alternative courses of action prior to choosing the most appropriate action. Klein developed a model

based on a team setting that resulted in an RPD-Agent architecture. This architecture consists of four modules

[45]. The communication manager module governs the inter-agent communication and organises conversations.

The expert system module is a rule-based forward chaining system. It contains knowledge related to the other

agents and external world. The process manager module is responsible for scheduling and execution of plans. The

collaborative RPD module facilitates the collaboration of humans and RPD agents.

Developers of modern RPD-Agents generally use R-CAST because the state and functionality are well suited

to Agent Oriented Programming (AOP). Figure 3 shows how agents can be used to embrace a scalable architecture.

This software has been tested within a military command-and control simulation, involving intelligence gathering,

logistics and force protection. Under normal time pressures, human teams make the correct decisions about a

potential threat. But when subject to time constraints, the same teams’ performance may suffer due to the lack of

information sharing. This may result in incorrect decision making about whether to attack or avoid the incoming
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Fig. 3. R-CAST: RPD-enabled Agent Architecture [46]

threats. The researchers have demonstrated that the R-CAST agent systems helped the human agent in making

the right decision under time pressured conditions [47]. As suggested, other frameworks exist and many achieved

limited success, although none have an enduring outcome. The current paper proposes a hybridised approach,

which is discussed next.

4. Proposed cognitive mission system

Researchers have shown that it may be possible to combine a scientific understanding of the brain with im-

proved parallel processing techniques in software to enhance higher-order decision making within machines. Fu-

ture cognitive architectures will continue to rely on improvements in Computational Intelligence (CI) techniques,

especially AI and Machine Intelligence (MI). Previous designs have failed to endure. Given that the problem

space is complex and the environment is often continuously changing, constraints are imposed to determine re-

peatable results. Most are focused on attempts to map or reproduce human-like functions and procedures. It may

be possible to stimulate machines to provide event-based responses without the need to duplicate or mimic human

cognition, however there is a real need to provide recognition, learning, memory (persistent and temporal), rea-

soning and rationality. These represent the key attributes that must be pursued using a three dimensional approach

(events, kernel behaviours and decision-making). This is to simultaneously monitor events, kernel behaviours and

implement higher-levels of decision-making, while processing requests, coordinating the mission and adapting to

environmental changes.

Given the amount of research and techniques to be discussed or evaluated, this paper simply highlights a num-

ber of appropriate concepts that require significant consideration. These concepts are derived from techniques used

in machines that were previously developed for other purposes, by a divergent collection of skills and expertise.

Some of these machines have fixed form and function, where many more modern machines are mobile and ex-

pected to operate in dynamic environments. Many of these focus on attempt to personify human behaviour within

machines. At least seven of these approaches have reported limited success. For instance PRS, SOAR, Prodigy,

ICARUS, dMars, JACK, Adaptive Character of Thought–Rational (ACT-R) and R-CAST. They involve creating

control systems, rules to implement constraints, logic to make low-level decisions (logic), memory models to

build situation awareness and expert systems to implement corporate knowledge. The facts would traditionally be

decomposed by humans and preloaded into the systems memory model before execution. Similarly, all learning

would be validated externally before being appended to the existing knowledge repository for re-use during other
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missions. These all rely on a mission controller seeking to complete a goal, based on inferred facts that are derived

from heuristically modified knowledge (stored on-board in local databases). The need for each has already been

reported in existing literature, however a brief synopsis of these concepts include, but are not limited to:

• Communication between humans (intent) and machines (goals) is an enduring pursuit.

• Knowledge is presented, represented, verified, stored and retrieved in many forms.

• Memory can be represented in many ways, have a varying degree of significance and temporal usefulness.

Several labels to be investigated include: declarative, heuristic, episodic, short-term (environmental and task

oriented information) long-term (environmental and goal oriented information) and procedural memory.

• BDI must be implemented using a contextual record-set, using task oriented modality that will be deter-

mined via external sources.

• The cyclic approach to monitoring the status of the whole system uses a rate monotonic schedule to update

state information. This three dimensional kernel prosecutes a prioritised list of pre-emptive processes in

manageable chunks to execute the actions being prescribed during the status checks. The kernel runs a

‘reactor’ thread to monitor system signals and events to coordinate mission goals during the conduct of its

decomposed tasks.

More research needs to be done in order to determine whether any existing techniques can be re-used, inte-

grated or implemented at scale within the proposed cognitive mission systems. Figure 4 displays a schematic of

a number of concepts that may provide higher-levels of cognitive decision-making on-board the platform. An

holistic approach calls for a design that considers transforming human intent into a programmatic format that is

capable of achieving the decomposition of goals for the desired concepts. The OODA loop has successfully been

used externally to focus human cognition. These have been encoded as BDI concepts to control machines (in-

ternal state/behaviour space). The hardware must operate using a real-time operating system that is pre-emptive

and sufficiently parallel in nature to process thousands of micro-threads independently. There is no doubt that

Fig. 4. Proposed Cognitive Mission Systems
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a production system should be used to manage the mission goals, a memory model is required to represent and

manage the system’s state of mind (virtual-psyche) and a belief system to maintain the system’s rationality. As

with all knowledge repositories, data, information, rules and assertions must to be verified and validated prior to

being included into the collection. In contrast, a machine will often fail due to missing or imprecise information

or directions. A mechanism is required to enable the reasoning system to request additional information to clarify

either the operator’s intent or the mission objectives (desires). Finally a multi-dimensional action process loop is

introduced to influence and monitor simultaneously. Global variables and system flags can be updated during a

rate monotonic loop (every system cycle). These would influence how and when each capability executes. Inde-

pendently, more capable sensors are used in a similar fashion to provide environmental information directly to the

mental model. The reasoning system is then free to reflect on the system’s operation and react accordingly.

5. Conclusion and future research

This paper highlights a number of the more successful concepts that could be used to generate a new approach

to cognitive decision-making. The future is uncertain and more research is required to verify which elements of

previous frameworks should be preserved and re-used. The integrated functionality should focus on an emerging

solution and stimulate a more collaborative solution. It is clear that existing effort has NOT provided an enduring

outcome. Similarly the recent shift to a more autonomous workforce has created an environment were solutions

are being actively pursued to reduce synthetic automation, currently provided by humans who remotely provide

the desired functionality.

This paper raises many issues and attempts to combine a number of pre-existing advanced knowledge repre-

sentation concepts. The NASA example shows where significant effort is still required to emulate new capability

and support existing earth bound facilities, especially in during isolated or uncertain conditions. New technology

using multi-threading techniques may fundamentally improve speed and scale required to champion internally or

externally distributed software execution. The use of a micro-kernel concept with independent threads will enable

compartmentalised state processing and enabled perceived behaviour to be pursued as outside of the kernel oper-

ations. This paper provides an outline of historical attempts to achieve human-like decision-making. It concludes

with a conceptual idea that is hoped to stimulate discussion and entice further collaboration by subject matter ex-

perts that ultimately generates more human-like decision-making within machines. Future research effort should

focus on the success stories and lessons learned, prior to creating components for use in future designs.
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