46 research outputs found

    Involvement of PPAR-Îł in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR Îł). PPAR-Îł activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions.</p> <p>Methods</p> <p>We have investigated whether oral treatment with telmisartan (the most potent PPAR-Îł activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-Îł activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-Îł antagonist GW9662 to study the role of PPAR-Îł activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-Îł activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-Îł antagonist GW9662.</p> <p>Results</p> <p>We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662.</p> <p>Conclusion</p> <p>The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell death and that the neuroprotective effect is mediated by PPAR-Îł activation. However, the results in AT1-deficient mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-Îł activation is involved in the anti-inflammatory and neuroprotective effects of AT1 deletion.</p

    Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM

    No full text
    Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein–Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1–peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1–GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies

    Patient Assessments of the Most Important Medical Decision During a Hospitalization

    No full text
    BACKGROUND: How medical decisions are made in real-life situations is largely unexplored. We explored patients' perceptions of decision-making during a hospitalization and examined the conformity of the decision process with expert recommendations. OBJECTIVE: To describe the conformity of the decision-making process with current expert opinion and examine the associations between various aspects of the decision-making process and a global assessment of the decision. METHODS: Mail survey of patients discharged from a teaching hospital in Geneva, Switzerland. Patients identified the main medical decision during their stay, and rated the decision process (11-item "decision process score") and their satisfaction with the decision (five-item "decision satisfaction score"). Both scores were scaled between 0 (worst) and 100 (best). PARTICIPANTS: The survey had 1467 respondents. MAIN RESULTS: In total 862 (58.8%) of 1467 respondents reported having made a medical decision while in the hospital. The decision process score (mean 78.5, SD 21.5) and the decision satisfaction score (mean 86.5, SD 20.4) were moderately correlated (r = 0.62). Men, healthier patients, patients discharged from the department of surgery, and those who reported sharing the decision with their doctor gave the highest ratings on both scales. Five process variables were independently associated with high satisfaction with the decision: the doctor explained all possible treatments and examinations, the patient was aware of risks at the time of the decision, the doctor's explanations were easy to understand, the patient was involved in the decision as much as desired or more, and the patient was not pressured into the decision. CONCLUSIONS: A majority of patients discharged from a general hospital were able to identify and rate a medical decision. Recommended features of the process of medical decision-making were associated with greater satisfaction with the decision

    Angiotensin IV is Induced in Experimental Autoimmune Encephalomyelitis but Fails to Influence the Disease

    No full text
    In multiple sclerosis (MS) and its corresponding animal models, over-activity of the renin-angiotensin system (RAS) has been reported and pharmacological RAS blockade exerts beneficial effects. The RAS generates a number of bioactive angiotensins, thereby primarily regulating the body's sodium homeostasis and blood pressure. In this regard, angiotensin IV (AngIV), a metabolite of the RAS has been shown to modulate inflammatory responses. Here we studied potential implications of AngIV signalling in myelin oligodendrocyte glycoprotein (MOG) peptide induced murine experimental autoimmune encephalomyelitis (EAE), a close-to-MS animal model. Mass spectrometry revealed elevated plasma levels of AngIV in EAE. Expression of cognate AT4 receptors was detected in macrophages and T cells as major drivers of pathology in EAE. Yet, AngIV did not modulate macrophage or T cell functions in vitro or displayed detectable effects on neuroantigen specific immune responses in vivo. The data argue against a major contribution of AngIV signalling in the immunopathogenesis of MOG-EAE
    corecore