4 research outputs found

    Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma.

    Get PDF
    BACKGROUND: To compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence. METHODS: Participants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity. RESULTS: The ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (p≤0.0001) and NY-ESO-1-specific CD4+ and CD8+ responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+ double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants. CONCLUSIONS: The vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse

    Targeting Colon Cancers with Mutated BRAF and Microsatellite Instability

    No full text
    The subgroup of colon cancer (CRC) characterized by mutation in the BRAF gene and high mutation rate in the genomic DNA sequence, known as the microsatellite instability (MSI) phenotype, accounts for roughly 10% of the patients and derives from polyps with a serrated morphology. In this review, both features are discussed with regard to therapeutic opportunities. The most prevalent cancer-associated BRAF mutation is BRAF V600E that causes constitutive activation of the pro-proliferative MAPK pathway. Unfortunately, the available BRAF-specific inhibitors had little clinical benefit for metastatic CRC patients due to adaptive MAPK reactivation. Recent contributions for the development of new combination therapy approaches to pathway inhibition will be highlighted. In addition, we review the promising role of the recently developed immune checkpoint therapy for the treatment of this CRC subtype. The MSI phenotype of this subgroup results from an inactivated DNA mismatch repair system and leads to frameshift mutations with translation of new amino acid stretches and the generation of neo-antigens. This most likely explains the observed high degree of infiltration by tumour-associated lymphocytes. As cytotoxic lymphocytes are already part of the tumour environment, their activation by immune checkpoint therapy approaches is highly promising.info:eu-repo/semantics/publishedVersio

    Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors

    No full text
    corecore