27 research outputs found

    Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol

    Get PDF
    Purpose: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. // Methods: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. // Results: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, –0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. // Conclusion: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making

    Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19

    Get PDF
    Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in an COVID-19 to date, a comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalised COVID-19 patients collected across the hospitalisation period as part of the UK ISARIC4C study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to heathy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention

    Viral Coinfections in Hospitalized Coronavirus Disease 2019 Patients Recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK Study

    Get PDF
    Background: We conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity. Methods: Multiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge. Results: A coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity. Conclusions: Viral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward

    Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study.

    Get PDF
    BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London

    Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19:a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK

    Get PDF
    Background Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. Methods We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. Findings 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05–1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08–1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60–0·72] for those without asthma and 0·74 [0·62–0·87] for those with asthma; p<0·0001 for both). In patients aged 16–49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73–1·86] for those on no asthma therapy, 0·99 [0·61–1·58] for those on SABAs only, 0·94 [0·62–1·43] for those on inhaled corticosteroids only, 1·02 [0·67–1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25–3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12–1·22] for those not on inhaled corticosteroids, and 1·10 [1·04–1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04–1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80−0·92]). Interpretation Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease

    Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England.

    Get PDF
    Background: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient’s “bed pathway” - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. Methods: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. Results: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: “Ward, CC, Ward”, “Ward, CC”, “CC” and “CC, Ward”. Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. Conclusions: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. Trial registration: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.</p

    Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study : a multicentre, prospective cohort study

    Get PDF
    Background Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19. Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded. Findings We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives. Interpretation In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist

    Procalcitonin is not a reliable biomarker of bacterial coinfection in people with coronavirus disease 2019 undergoing microbiological investigation at the time of hospital admission

    Get PDF
    Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60])
    corecore