3,645 research outputs found

    Non-Caucasian Recruiting and the Occupational Structure of the Navy

    Get PDF
    The inception of the all-volunteer armed force has placed the military service in competition with civilian employers for !he available portion of the Nation\u27s work force. While there are indications that the elimination of the draft has not severely hampered the services in meeting their immediate manpower needs, fears have been expressed that in time the racial composition of the services will deviate substantially from that of the civilian population.

    Nonparametric estimation of correlation functions in longitudinal and spatial data, with application to colon carcinogenesis experiments

    Get PDF
    In longitudinal and spatial studies, observations often demonstrate strong correlations that are stationary in time or distance lags, and the times or locations of these data being sampled may not be homogeneous. We propose a nonparametric estimator of the correlation function in such data, using kernel methods. We develop a pointwise asymptotic normal distribution for the proposed estimator, when the number of subjects is fixed and the number of vectors or functions within each subject goes to infinity. Based on the asymptotic theory, we propose a weighted block bootstrapping method for making inferences about the correlation function, where the weights account for the inhomogeneity of the distribution of the times or locations. The method is applied to a data set from a colon carcinogenesis study, in which colonic crypts were sampled from a piece of colon segment from each of the 12 rats in the experiment and the expression level of p27, an important cell cycle protein, was then measured for each cell within the sampled crypts. A simulation study is also provided to illustrate the numerical performance of the proposed method.Comment: Published in at http://dx.doi.org/10.1214/009053607000000082 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evidence Favoring Molybdenum−Carbon Bond Formation in Xanthine Oxidase Action: \u3csup\u3e17\u3c/sup\u3eO- and \u3csup\u3e13\u3c/sup\u3eC-ENDOR and Kinetic Studies

    Get PDF
    The reaction mechanism of the molybdoenzyme xanthine oxidase has been further investigated by 13C and 17O ENDOR of molybdenum(V) species and by kinetic studies of exchange of oxygen isotopes. Three EPR signal-giving species were studied:  (i) Very Rapid, a transient intermediate in substrate turnover, (ii) Inhibited, the product of an inhibitory side reaction with aldehyde substrates, and (iii) Alloxanthine, a species formed by reaction of reduced enzyme with the inhibitor, alloxanthine. The Very Rapid signal was developed either with [8-13C]xanthine or with 2-oxo-6-methylpurine using enzyme equilibrated with [17O]H2O. The Inhibited signal was developed with 2H13C2HO and the Alloxanthine signal by using [17O]H2O. Estimates of Mo−C distances were made, from the anisotropic components of the 13C-couplings, by corrected dipolar coupling calculations and by back-calculation from assumed possible structures. Estimated distances in the Inhibited and Very Rapid species were about 1.9 and less than 2.4 Å, respectively. A Mo−C bond in the Inhibited species is very strongly suggested, presumably associated with side-on bonding to molybdenum of the carbonyl of the aldehyde substrate. For the Very Rapid species, a Mo−C bond is highly likely. Coupling from a strongly coupled 17O, not in the form of an oxo group, and no coupling from other oxygens was detected in the Very Rapid species. No coupled oxygens were detected in the Alloxanthine species. That the coupled oxygen of the Very Rapid species is the one that appears in the product uric acid molecule was confirmed by new kinetic data. It is concluded that this oxygen of the Very Rapid species does not, as frequently assumed, originate from the oxo group of the oxidized enzyme. A new turnover mechanism is proposed, not involving direct participation of the oxo ligand group, and based on that of Coucouvanis et al. [Coucouvanis, D., Toupadakis, A., Lane, J. D., Koo, S. M., Kim, C. G., Hadjikyriacou, A. (1991) J. Am. Chem. Soc. 113, 5271−5282]. It involves formal addition of the elements of the substrate (e.g., xanthine) across the MoS double bond, to give a Mo(VI) species. This is followed by attack of a “buried” water molecule (in the vicinity of molybdenum and perhaps a ligand of it) on the bound substrate carbon, to give an intermediate that on intramolecular one-electron oxidation gives the Very Rapid species. The latter, in keeping with the 13C, 17O, and 33S couplings, is presumed to have the 8-CO group of the uric acid product molecule bonded side-on to molybdenum, with the sulfido molybdenum ligand retained, as in the oxidized enzyme

    Multi-Element Airfoil System

    Get PDF
    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise
    corecore