695 research outputs found

    Convolutional neural networks for challenges in automated nuclide identification

    Get PDF
    Improvements in Radio-Isotope IDentification (RIID) algorithms have seen a resurgence in interest with the increased accessibility of machine learning models. Convolutional Neural Network (CNN)-based models have been developed to identify arbitrary mixtures of unstable nuclides from gamma spectra. In service of this, methods for the simulation and pre-processing of training data were also developed. The implementation of 1D multi-class, multi-label CNNs demonstrated good generalisation to real spectra with poor statistics and significant gain shifts. It is also shown that even basic CNN architectures prove reliable for RIID under the challenging conditions of heavy shielding and close source geometries, and may be extended to generalised solutions for pragmatic RIID

    Knee angle affects posterior chain muscle activation during an isometric test used in soccer players

    Get PDF
    It has been suggested that altering the knee flexion angle during a commonly used supine isometric strength test developed with professional soccer players changes preferential hamstring muscle recruitment. The aim of this study was to examine the electromyography (EMG) knee joint-angle relationship during this test, as these data are currently unknown. Ten recreational male soccer athletes (age: 28 ± 2.4 years) were recruited and performed a supine isometric strength test on their dominant leg with the knee placed at two pre-selected flexion angles (30° and 90°). The surface EMG of the gluteus maximus, biceps femoris, semitendinosus, and medial gastrocnemius was measured, in addition to the within-session reliability (intraclass correlation coefficient (ICC) and coefficient of variation (CV)). Within-session reliability showed large variation dependent upon the test position and muscle measured (CV% = 8.8⁻36.1) Absolute mean EMG activity and percentage of maximum voluntary isometric contraction (MVIC) indicated different magnitudes of activation between the two test positions; however, significant mean differences were present for the biceps femoris only with greater activation recorded at the 30° knee angle (% MVIC: 31 ± 9 vs. 22 ± 7; = 0.002). These differences (30% mean difference) were greater than the observed typical measurement error (CV% = 13.1⁻14.3 for the 90° and 30° test positions, respectively). Furthermore, the percentage MVIC showed a trend of heightened activation of all muscles with the knee positioned at 30°, but there was also more within-subject variation, and this was more pronounced for the gluteus maximus (CV% = 36.1 vs. 19.8) and medial gastrocnemius (CV% 31 vs. 22.6). These results indicate that biceps femoris and overall posterior chain muscle activation is increased with the knee positioned at 30° of flexion; however, the 90° angle displayed less variation in performance within individual participants, especially in the gluteus maximus and medial gastrocnemius. Thus, practitioners using this test to assess hamstring muscle strength should ensure appropriate familiarisation is afforded, and then may wish to prioritise the 30° knee position

    Toxic Algae Silence Physiological Responses to Multiple Climate Drivers in a Tropical Marine Food Chain

    Get PDF
    Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings – especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-off) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.</p

    The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars II. Final Results

    Get PDF
    We present the final results of a ROSAT PSPC program to study the soft X-ray emission properties of a complete sample of low zz quasars. The main results are: 1. There is no evidence for significant soft excess emission or excess foreground absorption by cold gas in 22 of the 23 quasars. 2. The mean 0.2-2 keV continuum of quasars agrees remarkably well with an extrapolation of the mean 1050-350A continuum recently determined by Zheng et al. (1996), indicating that there is no steep soft component below 0.2 keV. 3. The occurrence of warm absorbers in quasars is rather rare, in sharp contrast to lower luminosity AGN. 4. The strongest correlation found is between the spectral slope, alpha_x, and the Hb FWHM. This remarkably strong correlation may result from a dependence of alpha_x on L/L_Edd, as seen in Galactic black hole candidates. 5. There appears to exist a distinct class of ``X-ray weak'' quasars. These may be quasars where the direct X-ray source is obscured, and only scattered X-rays are observed. 6. Thin accretion disk models cannot reproduce the observed optical to soft X-ray spectral shape. An as yet unknown physical mechanism maintains a strong correlation between the optical and soft X-ray emission. 7. The well known difference in alpha_x between radio-loud and radio-quiet quasars may be due only to their different Hb FWHM. 8. The agreement of the 21 cm and X-ray columns implies that He in the diffuse H II component of the Galactic ISM is ionized to He II or He III (shortened abstract).Comment: 19 pages of text only, uses aas2pp4.sty file, to appear in ApJ vol. 447, 3/1/97, complete postscript version of 34 pages including 5 tables and 8 figures available at http://physics.technion.ac.il/~laor/rosat/paper.p

    Quasi-Periodic Occultation by a Precessing Accretion Disk and Other Variabilities of SMC X-1

    Full text link
    We have investigated the variability of the binary X-ray pulsar, SMC X-1, in data from several X-ray observatories. We confirm the ~60-day cyclic variation of the X-ray flux in the long-term monitoring data from the RXTE and CGRO observatories. X-ray light curves and spectra from the ROSAT, Ginga, and ASCA observatories show that the uneclipsed flux varies by as much as a factor of twenty between a high-flux state when 0.71 second pulses are present and a low-flux state when pulses are absent. In contrast, during eclipses when the X-rays consist of radiation scattered from circumsource matter, the fluxes and spectra in the high and low states are approximately the same. These observations prove that the low state of SMC X-1 is not caused by a reduction in the intrinsic luminosity of the source, or a spectral redistribution thereof, but rather by a quasi-periodic blockage of the line of sight, most likely by a precessing tilted accretion disk. In each of two observations in the midst of low states a brief increase in the X-ray flux and reappearance of 0.71 second pulses occurred near orbital phase 0.2. These brief increases result from an opening of the line of sight to the pulsar that may be caused by wobble in the precessing accretion disk. The records of spin up of the neutron star and decay of the binary orbit are extended during 1991-1996 by pulse-timing analysis of ROSAT, ASCA, and RXTE PCA data. The pulse profiles in various energy ranges from 0.1 to >21 keV are well represented as a combination of a pencil beam and a fan beam. Finally, there is a marked difference between the power spectra of random fluctuations in the high-state data from the RXTE PCA below and above 3.4 keV. Deviation from the fitted power law around 0.06 Hz may be QPO.Comment: Accepted to ApJ. 33 pages including 11 figure

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release

    Get PDF
    Background Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coliand Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pH 12.0. Results TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16–0.05 units (”M glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was “dropped-in” into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. Conclusions This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis

    Observations and Theoretical Implications of the Large Separation Lensed Quasar SDSS J1004+4112

    Full text link
    We study the recently discovered gravitational lens SDSS J1004+4112, the first quasar lensed by a cluster of galaxies. It consists of four images with a maximum separation of 14.62''. The system has been confirmed as a lensed quasar at z=1.734 on the basis of deep imaging and spectroscopic follow-up observations. We present color-magnitude relations for galaxies near the lens plus spectroscopy of three central cluster members, which unambiguously confirm that a cluster at z=0.68 is responsible for the large image separation. We find a wide range of lens models consistent with the data, but they suggest four general conclusions: (1) the brightest cluster galaxy and the center of the cluster potential well appear to be offset by several kpc; (2) the cluster mass distribution must be elongated in the North--South direction, which is consistent with the observed distribution of cluster galaxies; (3) the inference of a large tidal shear (~0.2) suggests significant substructure in the cluster; and (4) enormous uncertainty in the predicted time delays between the images means that measuring the delays would greatly improve constraints on the models. We also compute the probability of such large separation lensing in the SDSS quasar sample, on the basis of the CDM model. The lack of large separation lenses in previous surveys and the discovery of one in SDSS together imply a mass fluctuation normalization \sigma_8=1.0^{+0.4}_{-0.2} (95% CL), if cluster dark matter halos have an inner slope -1.5. Shallower profiles would require higher values of \sigma_8. Although the statistical conclusion might be somewhat dependent on the degree of the complexity of the lens potential, the discovery is consistent with the predictions of the abundance of cluster-scale halos in the CDM scenario. (Abridged)Comment: 21 pages, 24 figures, 5 tables, accepted for publication in Ap
    • 

    corecore