1,400 research outputs found

    OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia

    Get PDF
    Spermatocytic seminoma (SS) is a rare testicular neoplasm that occurs predominantly in older men. In this study, we aimed to shed light on the histogenesis of SS by investigating the developmental expression of protein markers that identify distinct subpopulations of human spermatogonia in the normal adult testis. We analysed the expression pattern of OCT2, SSX2-4, and SAGE1 in 36 SS cases and four intratubular SS (ISS) as well as a series of normal testis samples throughout development. We describe for the first time two different types of SS characterized by OCT2 or SSX2-4 immunoexpression. These findings are consistent with the mutually exclusive antigenic profile of these markers during different stages of testicular development and in the normal adult testis. OCT2 was expressed predominantly in Adark spermatogonia, SSX2-4 was present in Apale and B spermatogonia and leptotene spermatocytes, whilst SAGE1 was exclusively present in a subset of post-pubertal germ cells, most likely B spermatogonia. The presence of OCT2 and SSX2-4 in distinct subsets of germ cells implies that these markers represent germ cells at different maturation stages. Analysis of SAGE1 and SSX2-4 in ISS showed spatial differences suggesting ongoing maturation of germ cells during progression of SS tumourigenesis. We conclude that the expression pattern of OCT2, SSX2-4, and SAGE1 supports the origin of SS from spermatogonia and provides new evidence for heterogeneity of this tumour, potentially linked either to the cellular origin of SS or to partial differentiation during tumour progression, including a hitherto unknown OCT2-positive variant of the tumour likely derived from Adark spermatogonia. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Rhea—a manually curated resource of biochemical reactions

    Get PDF
    Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive resource of expert-curated biochemical reactions. Rhea provides a non-redundant set of chemical transformations for use in a broad spectrum of applications, including metabolic network reconstruction and pathway inference. Rhea includes enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list), transport reactions and spontaneously occurring reactions. Rhea reactions are described using chemical species from the Chemical Entities of Biological Interest ontology (ChEBI) and are stoichiometrically balanced for mass and charge. They are extensively manually curated with links to source literature and other public resources on metabolism including enzyme and pathway databases. This cross-referencing facilitates the mapping and reconciliation of common reactions and compounds between distinct resources, which is a common first step in the reconstruction of genome scale metabolic networks and model

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency

    Get PDF
    In culture isolated bone marrow mesenchymal stem cells (more precisely termed skeletal stem cells, SSCs) spontaneously differentiate into fibroblasts, preventing the growth of large numbers of multipotent SSCs for use in regenerative medicine. However, the mechanisms that regulate the expansion of SSCs, while maintaining multipotency and preventing fibroblastic differentiation are poorly understood. Major hurdles to understanding how the maintenance of SSCs is regulated are (a) SSCs isolated from bone marrow are heterogeneous populations with different proliferative characteristics and (b) a lack of tools to investigate SSC number expansion and multipotency. Here, a nanotopographical surface is used as a tool that permits SSC proliferation while maintaining multipotency. It is demonstrated that retention of SSC phenotype in culture requires adjustments to the cell cycle that are linked to changes in the activation of the mitogen activated protein kinases. This demonstrates that biomaterials can offer cross-SSC culture tools and that the biological processes that determine whether SSCs retain multipotency or differentiate into fibroblasts are subtle, in terms of biochemical control, but are profound in terms of determining cell fat

    A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival

    Get PDF
    Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD− transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection

    Designing clinical trials in paediatric inflammatory bowel diseases:a PIBDnet commentary

    Get PDF
    Introduction: The optimal trial design for assessing novel therapies in paediatric IBD (PIBD) is a subject of intense ongoing global discussions and debate among the different stakeholders. However, there is a consensus that the current situation in which most medications used in children with IBD are prescribed as off-label without sufficient paediatric data is unacceptable. Shortening the time lag between adult and paediatric approval of drugs is of the upmost importance. In this position paper we aimed to provide guidance from the global clinical research network (Pediatric Inflammatory Bowel Disease Network, PIBDnet) for designing clinical trials in PIBD in order to facilitate drug approval for children. Methods: A writing group has been established by PIBDnet and topics were assigned to different members. After an iterative process of revisions among the writing group and one face-to-face meeting, all statements have reached consensus of >80% as defined a priori. Next, all core members of PIBDnet voted on the statements, reaching consensus of >80% on all statements. Comments from the members were incorporated in the text. Results: The commentary includes 18 statements for guiding data extrapolation from adults, eligibility criteria to PIBD trials, use of placebo, dosing, endpoints and recommendations for feasible trials. Controversial issues have been highlighted in the text. Conclusion: The viewpoints expressed in this paper could assist planning clinical trials in PIBD which are both of high quality and ethical, while remaining pragmatic

    Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11

    Get PDF
    For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5 breakpoint in intron 4; 3 breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G>C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies

    Implementation of Client-Centered Care Coordination for HIV Prevention with Black Men Who Have Sex with Men: Activities, Personnel Costs, and Outcomes—HPTN 073

    Get PDF
    Background: Black men who have sex with men (MSM) experience disproportionate rates of HIV infection in the USA, despite being no more likely to engage in sexual risk behaviors than other MSM racial/ethnic groups. HIV pre-exposure prophylaxis (PrEP) has been shown to reduce risk of HIV acquisition; however, rates of PrEP use among Black MSM remain low. Clinical, psychosocial, and structural factors have been shown to impact PrEP use and adherence among Black MSM. Care coordination of HIV prevention services has the potential to improve PrEP use and adherence for Black MSM, as it has been shown to improve HIV-related care outcomes among people living with HIV. Methods: Client-centered care coordination (C4) is a multi-level intervention designed to address clinical, psychosocial, and structural barriers to HIV prevention services for Black MSM within HPTN 073, a PrEP demonstration project among Black MSM in three cities in the USA. The current study examined the implementation process of C4, specifically investigating the activities, cost, time, and outcomes associated with the C4 intervention. Results: On average, participants engaged in five care coordination encounters. The vast majority of care coordination activities were conducted by counselors, averaging 30 min per encounter. The cost of care coordination was relatively low with a mean cost of $8.70 per client encounter. Conclusion: Although client-centered care coordination was initially implemented in well-resourced communities with robust HIV research and service infrastructure, our findings suggest that C4 can be successfully implemented in resource constrained communities
    corecore