40,149 research outputs found

    Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    Get PDF
    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation

    An order (n) algorithm for the dynamics simulation of robotic systems

    Get PDF
    The formulation of an Order (n) algorithm for DISCOS (Dynamics Interaction Simulation of Controls and Structures), which is an industry-standard software package for simulation and analysis of flexible multibody systems is presented. For systems involving many bodies, the new Order (n) version of DISCOS is much faster than the current version. Results of the experimental validation of the dynamics software are also presented. The experiment is carried out on a seven-joint robot arm at NASA's Goddard Space Flight Center. The algorithm used in the current version of DISCOS requires the inverse of a matrix whose dimension is equal to the number of constraints in the system. Generally, the number of constraints in a system is roughly proportional to the number of bodies in the system, and matrix inversion requires O(p exp 3) operations, where p is the dimension of the matrix. The current version of DISCOS is therefore considered an Order (n exp 3) algorithm. In contrast, the Order (n) algorithm requires inversion of matrices which are small, and the number of matrices to be inverted increases only linearly with the number of bodies. The newly-developed Order (n) DISCOS is currently capable of handling chain and tree topologies as well as multiple closed loops. Continuing development will extend the capability of the software to deal with typical robotics applications such as put-and-place, multi-arm hand-off and surface sliding

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    Predicted efficiency of Si wire array solar cells

    Get PDF
    Solar cells based on arrays of CVD-grown Si nano- or micro-wires have attracted interest as potentially low-cost alternatives to conventional wafer-based Si photovoltaics [1-6], and single-wire solar cells have been reported with efficiencies of up to 3.4% [7]. We recently presented device physics simulations which predicted efficiencies exceeding 17%, based on experimentally observed diffusion lengths within our wires [8]. However, this model did not take into account the optical properties of a wire array device - in particular the inherently low packing fraction of wires within CVD-grown wire arrays, which might limit their ability to fully absorb incident sunlight. For this reason, we have combined a device physics model of Si wire solar cells with FDTD simulations of light absorption within wire arrays to investigate the potential photovoltaic efficiency of this cell geometry. We have found that even a sparsely packed array (14%) is expected to absorb moderate (66%) amounts of above-bandgap solar energy, yielding a simulated photovoltaic efficiency of 14.5%. Because the wire array comprises such a small volume of Si, the observed absorption represents an effective optical concentration, which enables greater operating voltages than previously predicted for Si wire array solar cells

    Ground-based photometry of the 21-day Neptune HD106315c

    Full text link
    Space-based transit surveys such as K2 and TESS allow the detection of small transiting planets with orbital periods beyond 10 days. Few of these warm Neptunes are currently known around stars bright enough to allow for detailed follow-up observations dedicated to their atmospheric characterization. The 21-day period and 3.95 RR_\oplus planet HD106315c has been discovered based on the observation of two of its transits by K2. We have observed HD106315 using the 1.2m Euler telescope equipped with the EulerCam camera on two instances to confirm the transit using broad band photometry and refine the planetary period. Based on two observed transits of HD106315c, we detect its \sim1 mmag transit and obtain a precise measurement of the planetary ephemerids, which are critical for planning further follow-up observations. We have used the attained precision together with the predicted yield from the TESS mission to evaluate the potential for ground-based confirmation of Neptune-sized planets found by TESS. We find that 1-meter-class telescopes on the ground equipped with precise photometers could substantially contribute to the follow-up of 162 TESS candidates orbiting stars with magnitudes of V14V \leq 14. Out of these, 74 planets orbit stars with V12V \leq 12 and 12 planets orbit V10V \leq 10, which makes these candidates high-priority objects for atmospheric characterization with high-end instrumentation.Comment: Published in A&A letters, 4 pages, 3 figure

    Image lag optimisation in a 4T CMOS image sensor for the JANUS camera on ESA's JUICE mission to Jupiter

    Get PDF
    The CIS115, the imager selected for the JANUS camera on ESA’s JUICE mission to Jupiter, is a Four Transistor (4T) CMOS Image Sensor (CIS) fabricated in a 0.18 µm process. 4T CIS (like the CIS115) transfer photo generated charge collected in the pinned photodiode (PPD) to the sense node (SN) through the Transfer Gate (TG). These regions are held at different potentials and charge is transferred from the potential well under PPD to the potential well under the FD through a voltage pulse applied to the TG. Incomplete transfer of this charge can result in image lag, where signal in previous frames can manifest itself in subsequent frames, often appearing as ghosted images in successive readouts. This can seriously affect image quality in scientific instruments and must be minimised. This is important in the JANUS camera, where image quality is essential to help JUICE meet its scientific objectives. This paper presents two techniques to minimise image lag within the CIS115. An analysis of the optimal voltage for the transfer gate voltage is detailed where optimisation of this TG “ON” voltage has shown to minimise image lag in both an engineering model and gamma and proton irradiated devices. Secondly, a new readout method of the CIS115 is described, where following standard image integration, the PPD is biased to the reset voltage level (VRESET) through the transfer gate to empty charge on the PPD and has shown to reduce image lag in the CIS115
    corecore