1,881 research outputs found
Trophic Differentiation In Ilyodon, A Genus Of StreamâDwelling Goodeid Fishes: Speciation Versus Ecological Polymorphism
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137594/1/evo04814.pd
Returning to Learning: Adults' Success in College Is Key to America's Future
Provides an overview of research on adult learners' characteristics, risk factors, and needs at four-year institutions and in for-credit and non-credit courses, and what changes institutions and governments can implement to help adult students succeed
Interspecific Hybridization And The Evolutionary Origin Of A Gynogenetic Fish, Poecilia Formosa
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137459/1/evo04029.pd
Diabolical survival in Death Valley: recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth
One of the most endangered vertebrates, the Devils Hole pupfish Cyprinodon diabolis, survives in a nearly impossible environment: a narrow subterranean fissure in the hottest desert on earth, Death Valley. This species became a conservation icon after a landmark 1976 US Supreme Court case affirming federal groundwater rights to its unique habitat. However, one outstanding question about this species remains unresolved: how long has diabolis persisted in this hellish environment? We used next-generation sequencing of over 13 000 loci to infer the demographic history of pupfishes in Death Valley. Instead of relicts isolated 2â3 Myr ago throughout repeated flooding of the entire region by inland seas as currently believed, we present evidence for frequent gene flow among Death Valley pupfish species and divergence after the most recent flooding 13 kyr ago. We estimate that Devils Hole was colonized by pupfish between 105 and 830 years ago, followed by genetic assimilation of pelvic fin loss and recent gene flow into neighbouring spring systems. Our results provide a new perspective on an iconic endangered species using the latest population genomic methods and support an emerging consensus that timescales for speciation are overestimated in many groups of rapidly evolving species
Speech recognition in noise for cochlear implant listeners: Benefits of residual hearing
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage
Genetic divergence in the Poecilia sphenops complex in Middle America
Based on morphological and allozymic evidence, the Poecilia sphenops complex is an array of at least ten biological species ranging from Mexico to Venezuela (systematics are unclear south of Mexico) and not a single polytypic species as some authors have previously suggested. The allozyme data also suggest that the populations of mollies with tricuspid teeth on the Atlantic and Pacific coasts of Mexico now referred to as P. sphenops (sensu strito) may represent at least two biological species. As some of the members of the complex are used as general research animals, experimental biologists should ascertain the specific identity of their stocks.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25212/1/0000652.pd
Genetic Subdivision and Variation in Selfing Rates Among Central American Populations of the Mangrove Rivulus, Kryptolebias marmoratus.
We used 32 polymorphic microsatellite loci to investigate how a mixed-mating system affects population genetic structure in Central American populations (N = 243 individuals) of the killifish Kryptolebias marmoratus (mangrove rivulus), 1 of 2 of the world's only known self-fertilizing vertebrates. Results were also compared with previous microsatellite surveys of Floridian populations of this species. For several populations in Belize and Honduras, population structure and genetic differentiation were pronounced and higher than in Florida, even though the opposite trend was expected because populations in the latter region were presumably smaller and highly selfing. The deduced frequency of selfing (s) ranged from s = 0.39-0.99 across geographic locales in Central America. This heterogeneity in selfing rates was in stark contrast to Florida, where s > 0.9. The frequency of outcrossing in a population (t = 1 - s) was tenuously correlated with local frequencies of males, suggesting that males are one of many factors influencing outcrossing. Observed distributions of individual heterozygosity showed good agreement with expected distributions under an equilibrium mixed-mating model, indicating that rates of selfing remained relatively constant over many generations. Overall, our results demonstrate the profound consequences of a mixed-mating system for the genetic architecture of a hermaphroditic vertebrate
CBR Anisotropy from Primordial Gravitational Waves in Two-Component Inflationary Cosmology
We examine stochastic temperature fluctuations of the cosmic background
radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave
perturbations produced in the early universe. We consider spatially flat,
perturbed FRW models that begin with an inflationary phase, followed by a mixed
phase containing both radiation and dust. The scale factor during the mixed
phase takes the form , where are
constants. During the mixed phase the universe smoothly transforms from being
radiation to dust dominated. We find analytic expressions for the graviton mode
function during the mixed phase in terms of spheroidal wave functions. This
mode function is used to find an analytic expression for the multipole moments
of the two-point angular correlation function
for the CBR anisotropy. The analytic expression for the multipole
moments is written in terms of two integrals, which are evaluated numerically.
The results are compared to multipoles calculated for models that are {\it
completely} dust dominated at last-scattering. We find that the multipoles
of the CBR temperature perturbations for are
significantly larger for a universe that contains both radiation and dust at
last-scattering. We compare our results with recent, similar numerical work and
find good agreement. The spheroidal wave functions may have applications to
other problems of cosmological interest.Comment: 28 pgs + 6 postscript figures, RevTe
- âŠ