1,861 research outputs found

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    A software architecture for autonomous maintenance scheduling: Scenarios for UK and European Rail

    Get PDF
    A new era of automation in rail has begun offering developments in the operation and maintenance of industry standard systems. This article documents the development of an architecture and range of scenarios for an autonomous system for rail maintenance planning and scheduling. The Unified Modelling Language (UML) has been utilized to visualize and validate the design of the prototype. A model for information exchange between prototype components and related maintenance planning systems is proposed in this article. Putting forward an architecture and set of usage mode scenarios for the proposed system, this article outlines and validates a viable platform for autonomous planning and scheduling in rail

    An intelligent framework and prototype for autonomous maintenance planning in the rail industry

    Get PDF
    This paper details the development of the AUTONOM project, a project that aims to provide an enterprise system tailored to the planning needs of the rail industry. AUTONOM extends research in novel sensing, scheduling, and decision-making strategies customised for the automated planning of maintenance activities within the rail industry. This paper sets out a framework and software prototype and details the current progress of the project. In the continuation of the AUTONOM project it is anticipated that the combination of techniques brought together in this work will be capable of addressing a wider range of problem types, offered by Network rail and organisations in different industries

    An evaluation of a self-management program for patients with long-term conditions

    Get PDF
    Objective: To evaluate a group-based self-management program (SMP) delivered as part of a quality improvement program, Co-Creating Health, for patients living with one of four long-term conditions (LTCs): chronic obstructive pulmonary disease, depression, diabetes, and musculoskeletal pain. Methods: The 7 week SMP was co-delivered by lay and health professional tutors. Patients completed self-reported outcome measures at pre-course and 6 months follow-up. Results: 486 patients completed (attended ≥5 sessions) the SMP and returned pre-course and 6 months follow up data. Patients reported significant improvements in patient activation (ES 0.65, pp= 0.04), and health status (ES 0.33, pppp values from pp= 0.028). Conclusion: Attending the SMP led to improvements in a range of outcomes. Improvement in patient activation is important, as activated patients are more likely to perform self-care activities. Practice implications: Co-delivered SMPs provide meaningful improvements in activation for >50 of those who complete and are a useful addition to self-management support provision

    An unstructured CD-grid variational formulation for sea ice dynamics

    Full text link
    For the numerical simulation of earth system models, Arakawa grids are largely employed. A quadrilateral mesh is assumed for their classical definition, and different types of grids are identified depending on the location of the discretized quantities. The B-grid has both velocity components at the center of a cell, the C-grid places the velocity components on the edges in a staggered fashion, and the D-grid is a ninety-degree rotation of a C-grid. Historically, B-grid formulations of sea ice dynamics have been dominant because they have matched the grid type used by ocean models. In recent years, as ocean models have increasingly progressed to C-grids, sea ice models have followed suit on quadrilateral meshes, but few if any implementations of unstructured C-grid sea ice models have been developed. In this work, we present an unstructured CD-grid type formulation of the elastic-viscous-plastic rheology, where the velocity unknowns are located at the edges, rather than at the vertices, as in the B-grid. The notion of a CD-grid has been recently introduced and assumes that the velocity components are co-located at the edges. The mesh cells in our analysis have nn sides, with nn greater than or equal to four. Numerical results are included to investigate the features of the proposed method. Our framework of choice is the Model for Prediction Across Scales (MPAS) within E3SM, the climate model of the U.S. Department of Energy, although our approach is general and could be applied to other models as well. While MPAS-Seaice is currently defined on a B-grid, MPAS-Ocean runs on a C-grid, hence interpolation operators are heavily used when coupled simulations are performed. The discretization introduced here aims at transitioning the dynamics of MPAS-Seaice to a CD-grid, to ultimately facilitate improved coupling with MPAS-Ocean and reduce numerical errors associated with this communication
    corecore