2,185 research outputs found

    Food insecurity: Its prevalence and relationship to fruit and vegetable consumption

    Get PDF
    Background Food insecurity in UK households is a substantial and growing concern. The present study identified those at risk of food insecurity and explored the relationship between food security and fruit and vegetable consumption. Methods Data were examined from the Food and You survey (2016) for a large representative sample (n = 3118) living in England, Wales and Northern Ireland. A ‘Food Security Score’ and a ‘Food Changes Score’ (relating to financially driven changes to food habits) were compiled and relationships with fruit and vegetable consumption were examined. Results The prevalence of marginal, low and very low food security was 12.6%, 5.4% and 2.8%, respectively. Significant correlations were observed between food security and fruit and vegetable consumption. Food security and food changes, independently, were significant predictors for fruit and vegetable consumption. With every unit increment in the Food Security Score (i.e., more food insecure), an 11% decrease in the odds of being a high fruit and vegetable consumer was evident. Likewise, the odds of being a high fruit and vegetable consumer decreases by 5% with every increment in the financially driven Food Changes Score. Conclusions A notable proportion (more than one‐fifth) experienced marginal, low or very low food security. Food insecurity and financially driven food changes were accompanied by decreases in the odds of being a high fruit and vegetable consumer. Findings underline the potential consequences of food insecurity, and point to further work aiming to examine other dietary implications, as well as strategies to mitigate against food insecurity and its detriment

    Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks

    Full text link
    This paper considers the nonparametric maximum likelihood estimator (MLE) for the joint distribution function of an interval censored survival time and a continuous mark variable. We provide a new explicit formula for the MLE in this problem. We use this formula and the mark specific cumulative hazard function of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This result leads to necessary and sufficient conditions for consistency of the MLE which imply that the MLE is inconsistent in general. We show that the inconsistency can be repaired by discretizing the marks. Our theoretical results are supported by simulations.Comment: 27 pages, 4 figure

    Numerical Study of a Mixed Ising Ferrimagnetic System

    Full text link
    We present a study of a classical ferrimagnetic model on a square lattice in which the two interpenetrating square sublattices have spins one-half and one. This model is relevant for understanding bimetallic molecular ferrimagnets that are currently being synthesized by several experimental groups. We perform exact ground-state calculations for the model and employ Monte Carlo and numerical transfer-matrix techniques to obtain the finite-temperature phase diagram for both the transition and compensation temperatures. When only nearest-neighbor interactions are included, our nonperturbative results indicate no compensation point or tricritical point at finite temperature, which contradicts earlier results obtained with mean-field analysis.Comment: Figures can be obtained by request to [email protected] or [email protected]

    Audiovisual annotation procedure for multi-view field recordings

    Get PDF
    Audio and video parts of an audiovisual document interact to produce an audiovisual, or multi-modal, perception. Yet, automatic analysis on these documents are usually based on separate audio and video annotations. Regarding the audiovisual content, these annotations could be incomplete, or not relevant. Besides, the expanding possibilities of creating audiovisual documents lead to consider different kinds of contents, including videos filmed in uncontrolled conditions (i.e. fields recordings), or scenes filmed from different points of view (multi-view). In this paper we propose an original procedure to produce manual annotations in different contexts, including multi-modal and multi-view documents. This procedure, based on using both audio and video annotations, ensures consistency considering audio or video only, and provides additionally audiovisual information at a richer level. Finally, different applications are made possible when considering such annotated data. In particular, we present an example application in a network of recordings in which our annotations allow multi-source retrieval using mono or multi-modal queries

    Effect of cylinder de-activation on the tribological performance of compression ring conjunction

    Get PDF
    The paper presents transient thermal-mixed-hydrodynamics of piston compression ring-cylinder liner conjunction for a 4-cylinder 4-stroke gasoline engine during a part of the New European Drive Cycle (NEDC). Analyses are carried out with and without cylinder de-activation (CDA) technology in order to investigate its effect upon the generated tribological conditions. In particular, the effect of CDA upon frictional power loss is studied. The predictions show that overall power losses in the piston-ring cylinder system worsen by as much as 10% because of the increased combustion pressures and liner temperatures in the active cylinders of an engine operating under CDA. This finding shows the down-side of this progressively employed technology, which otherwise is effective in terms of combustion efficiency with additional benefits for operation of catalytic converters. The expounded approach has not hitherto been reported in literature

    Association of Altered Collagen Content and Lysyl Oxidase Expression in Degenerative Mitral Valve Disease

    Get PDF
    Background—Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Methods—Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFÎČ1 were quantified by immunofluorescence and gene expression by PCR. Results—VICs density was increased, structural type I collagen density was reduced, while reparative type III collagen and proteoglycan densities were increased (p \u3c 0.0001) with an increase in spongiosa layer thickness in myxomatous valves. These changes were associated with a reduction in LOX (p \u3c 0.0001) and increase in TGFÎČ1 protein expression (p \u3c 0.0001). However, no significant change was seen in gene expression. Linear regression analysis identified a correlation between type I collagen density and LOX grade (R2 = 0.855; p \u3c 0.0001). Conclusions—Reduced type I collagen density with a simultaneous increase in type III collagen and proteoglycan densities possibly contributes to spongiosa layer expansion resulting in incompetent mitral valve leaflets. Observed changes in type I and III collagen densities in DMVD may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity

    Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species

    Get PDF
    Premise of the study: Consequences of global climate change are detectable in the historically nitrogen- and phosphorus-limited Arctic tundra landscape and have implications for the terrestrial carbon cycle. Warmer temperatures and elevated soil nutrient availability associated with increased microbial activity may influence rates of photosynthesis and respiration. Methods: This study examined leaf-level gas exchange, cellular ultrastructure, and related leaf traits in two dominant tundra species, Betula nana, a woody shrub, and Eriophorum vaginatum, a tussock sedge, under a 3-yr-old treatment gradient of nitrogen (N) and phosphorus (P) fertilization in the North Slope of Alaska. Key results: Respiration increased with N and P addition—the highest rates corresponding to the highest concentrations of leaf N in both species. The inhibition of respiration by light ("Kok effect") significantly reduced respiration rates in both species (P < 0.001), ranged from 12–63% (mean 34%), and generally decreased with fertilization for both species. However, in both species, observed rates of photosynthesis did not increase, and photosynthetic nitrogen use efficiency generally decreased under increasing fertilization. Chloroplast and mitochondrial size and density were highly sensitive to N and P fertilization (P < 0.001), though species interactions indicated divergent cellular organizational strategies. Conclusions: Results from this study demonstrate a species-specific decoupling of respiration and photosynthesis under N and P fertilization, implying an alteration of the carbon balance of the tundra ecosystem under future conditions

    A thermodynamic unification of jamming

    Full text link
    Fragile materials ranging from sand to fire-retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here we quantify jamming via a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the 'fluffiness' of a granular mixture. The thermodynamic model, casted in terms of pressure, temperature and free-volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy avoids the Kauzmann paradox entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure
    • 

    corecore