5,904 research outputs found

    Thermal expansion of the spin-1/2 Heisenberg-chain compound Cu(C4_4H4_4N2_2)(NO3_3)2_2

    Full text link
    Compounds containing magnetic subsystems representing simple model spin systems with weak magnetic coupling constants are ideal candidates to test theoretical predictions for the generic behavior close to quantum phase transitions. We present measurements of the thermal expansion and magnetostriction of the spin-1/2-chain compound copper pyrazine dinitrate Cu(C4_4H4_4N2_2)(NO3_3)2_2. Of particular interest is the low-temperature thermal expansion close to the saturation field Hc≃13.9TH_c \simeq 13.9 \mathrm{T}, which defines a quantum phase transition from the gapless Luttinger liquid state to the fully saturated state with a finite excitation gap. We observe a sign change of the thermal expansion for the different ground states, and at the quantum critical point HcH_c the low-temperature expansion approaches a 1/T1/\sqrt{T} divergence. Thus, our data agree very well with the expected quantum critical behaviour.Comment: 4 pages, 3 figures; to appear in the proceedings of the ICM 09 held in Karlsruhe, German

    Signature of nearly icosahedral structures in liquid and supercooled liquid Copper

    Full text link
    A growing body of experiments display indirect evidence of icosahedral structures in supercooled liquid metals. Computer simulations provide more direct evidence but generally rely on approximate interatomic potentials of unproven accuracy. We use first-principles molecular dynamics simulations to generate realistic atomic configurations, providing structural detail not directly available from experiment, based on interatomic forces that are more reliable than conventional simulations. We analyze liquid copper, for which recent experimental results are available for comparison, to quantify the degree of local icosahedral and polytetrahedral order

    Assessing Learning Outcomes in Middle-Division Classical Mechanics: The Colorado Classical Mechanics/Math Methods Instrument

    Full text link
    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.Comment: 11 pages, 6 figures, 1 tabl

    Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    Full text link
    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k_B T/J <= 0.025 for H=0 and H=8.7 Tesla where the system is ~30% magnetized. At H=0, the results are in quantitative agreement with exact calculations of the dynamic spin correlation function for a two-spinon continuum. At high magnetic field, there are multiple overlapping continua with incommensurate soft modes. The boundaries of these continua confirm long-standing predictions, and the intensities are consistent with exact diagonalization and Bethe Ansatz calculations.Comment: 4 pages, 4 figure

    Mitochondrial Mutations: Newly Discovered Players in Neuronal Degeneration

    Get PDF

    Optical properties of a light-emitting polymer directly patterned by soft lithography

    Get PDF
    Copyright © 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 81 (2002) and may be found at http://link.aip.org/link/?APPLAB/81/1955/1We present the optical properties of a directly patterned light-emitting polymer. The patterned poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-paraphenylenevinylene film is fabricated using hot embossing lithography. The effect of the embossed microstructure on the light emitted from the polymer is examined by measuring the angle-dependent photoluminescence and its photonic band structure. The imposed grating modifies the emitted light by Bragg scattering into free space light that would otherwise be trapped as waveguide modes. This simple patterning technique may find application in improving the performance of light-emitting polymer devices

    Neutron scattering from a coordination polymer quantum paramagnet

    Get PDF
    Inelastic neutron scattering measurements are reported for a powder sample of the spin-1/2 quantum paramagnet Cu(Quinoxaline)Br2\rm Cu(Quinoxaline)Br_2. Magnetic neutron scattering is identified above an energy gap of 1.9 meV. Analysis of the sharp spectral maximum at the onset indicates that the material is magnetically quasi-one-dimensional. Consideration of the wave vector dependence of the scattering and polymeric structure further identifies the material as a two-legged spin-1/2 ladder. Detailed comparison of the data to various models of magnetism in this material based on the single mode approximation and the continuous unitary transformation are presented. The latter theory provides an excellent account of the data with leg exchange J∥=2.0J_{\parallel}=2.0 meV and rung exchange J⊥=3.3J_{\perp}=3.3 meV.Comment: 10 pages, 11 figures, 1 tabl

    Pseudomonas aeruginosa is capable of natural transformation in biofilms

    Full text link
    Abstract Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologs of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa

    WHO SHOULD ASK? Ethical Interviewing in Psychiatric Epidemiology Studies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72116/1/j.1939-0025.1988.tb01584.x.pd
    • …
    corecore